357 resultados para AMS dating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (~1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative d13C values of these carbonates (>-43.5 per mill PDB) indicate methane as major carbon source; d18O values between 4.04 and 5.88 per mill PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO4**2- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (d34S: 21.0-38.6 per mill CDT; d18O: 9.0-17.6 per mill SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic coast of Mecklenburg-Vorpommern is located in the transition Zone between the region of Fennoscandian Uplift and the Central European Depression. In relation to the eustatic sea-level rise, the northeast coast shows a slower inundation, while for the southwestern area a faster transgression is indicated, which can be attributed to crustal movements. To determine the spatial and temporal differences since the onset of the Littorina Transgression, three relative sea-level curves have been established along a transect parallel to the gradient of upliftlsubsidence. The Wismar Bay area is one endpoint of the transect demonstrating today 10 Abb., 2 Tab. a relative sea-level rise of 1.4 mm/a. To determine the relative sea-level curve for the Wismar Bay, two sites were investigated on Rustwerder Spit (Poel) and Redentin. They provided reliable depth-age data, while the stratigraphy was additionally supported by lithological/geochemical, pollen, diatom and macrofossil data. Additional evidence was provided by archaeological submarine surveys and excavations. Comparing the new relative sea-level curve with a curve from the Vorpommern coast, it can be shown that for the period from 4000 cal BC until present, the differences between the two curves are caused by a constant neotectonic movement, while for the older periods an increasing isostatic component must be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At convergent margins, fluids rise through the forearc in response to consolidation of the upper plate and dewatering of the subducting plate, and produce various cold-seep-related features on the seafloor (mud diapirs, mud mounds). At the Central American forearc, authigenic carbonates precipitated from rising fluids within such structures during active venting while typical mixed-mud sediments were ejected onto the surrounding seafloor where they became intercalated with normal pelagic background sediments, indicating that mud mounds evolved unsteadily through alternating active and inactive phases. Intercalated regional ash layers from Plinian eruptions at the Central American volcanic arc provide time marks that constrain the ages of mud ejection activity. U/Th dating of drill core samples of authigenic carbonate caps of mud mounds yields ages agreeing well with those constrained by ash layers and showing that carbonate caps grow inward rather than outward during active venting. Both dating approaches show that offshore Nicaragua and Costa Rica (1) active and inactive phases can occur simultaneously at neighboring mounds, (2) mounds along the forearc have individual histories of activity, but there are distinct time intervals when nearly all mounds have been active or inactive, (3) lifetimes of mounds reach several hundred thousand years, and (4) highly active periods last 10-50 k.y. with intervening periods of >10 k.y. of relative quiescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the climate-sensitivity of the small glaciers studied, which rapidly responded to climate shifts. The start of prolonged Neoglacial glacier activity commenced during the Little Ice Age (LIA) around 700 cal BP, in agreement with reported advances from other glaciers on Svalbard. In conclusion, this study proposes a three-stage Holocene climate history of Svalbard, successively driven by LIS meltwater pulses, episodic Atlantic cooling and declining summer insolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea surface temperature and salinity estimates reconstructed using planktonic foraminiferal abundance and delta18O records from core SU90-03 (40°N, 32°W, 2475 m water depth) reveal large climatic fluctuations linked to major instabilities in Northern Hemisphere ice sheets over the last 150 000 years. Episodes of enhanced ice rafted detritus (IRD) input were accompanied by discrete temperature minima, representing coolings of between 4 and 8°C, and reductions in surface salinity of up to 2.5-3.5 per mil. Several additional cooling episodes of a similar magnitude were documented during intervals of low IRD input that appear to be synchronous, within the limits of dating, with ice rafting events spatially confined to higher latitudes. Accelerator mass spectrometer 14C dates for Heinrich events (H1 - 14.2 ka, H2 - 21.4 ka, H3 - 26.7 ka, H4 - 34.8 ka, H5 - 47.2 ka) obtained from core SU90-03 agree well with other published age estimates and suggest a contemporaneous pattern of climate change throughout the North Atlantic during the last glacial period. This interpretation is supported by a comparison of IRD and palaeotemperature records from DSDP site 609 and core SU90-03, which clearly shows that the major climatic fluctuations identified at high latitudes were transmitted toward the subtropics. However, 14C dates suggest that ice rafting episodes may be diachronous to some extent. The northward migration of the polar front after the H1 event at 40°N in the mid-Atlantic occurred at 14 ka, approximately 500 years earlier than along the Portuguese margin, where the southerly advection of polar waters persisted within eastern boundary current system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of numerical equations is developed to estimate past sea surface temperatures (SST) from fossil Antarctic diatoms. These equations take into account both the biogeographic distribution and experimentally derived silica dissolution. The data represent a revision and expansion of a floral data base used previously and includes samples resulting from progressive opal dissolution experiments. Factor analysis of 166 samples (124 Holocene core top and 42 artificial samples) resolved four factors. Three of these factors depend on the water mass distribution (one Subantarctic and two Antarctic assemblages); factor 4 corresponds to a 'dissolution assemblage'. Inclusion of this factor in the data analysis minimizes the effect of opal dissolution on the assemblages and gives accurate estimates of SST over a wide range of biosiliceous dissolution. A transfer function (DTF 166/34/4) is derived from the distribution of these factors versus summer SST. Its standard error is +/- 1°C in the -1 to +10 °C summer temperature range. This transfer function is used to estimate SST changes in two southern ocean cores (43°S and 55°S) which cover the last climatic cycle. The time scale is derived from the changes in foraminiferal oxygen and carbon isotopic ratios. The reconstructed SST records present strong analogies with the air temperature record over Antarctica at the Vostok site, derived from changes in the isotopic ratio of the ice. This similarity may be used to compare the oceanic isotope stratigraphy and the Vostok time scale derived from ice flow model. The oceanic time scale, if taken at face value, would indicate that large changes in ice accumulation rates occurred between warm and cold periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Date-32 is a fast and easily used computer program developed to date Quaternary deep-sea cores by associating variations in the earth's orbit with recurring oscillations in core properties, such as carbonate content or isotope composition. Starting with known top and bottom dates, distortions in the periodicities of the core properties due to varying sedimentation rates are realigned by fast Fourier analysis so as to maximise the spectral energy density at the orbital frequencies. This allows age interpolation to all parts of the core to an accuracy of 10 kyrs, or about 1.5% of the record duration for a typical Brunhes sequence. The influence of astronomical forcing is examined and the method is applied to provide preliminary dates in a high-resolution Brunhes record from DSDP Site 594 off southeastern New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to establish criteria for obtaining reliable K-Ar dates, conventional K-Ar studies of several Deep Sea Drilling Project sites were undertaken. K-Ar dates of these rocks may be subject to inaccuracies as the result of sea-water alteration. Inaccuracies may also result from the presence of excess radiogenic 40Ar trapped in rapidly cooled rocks at the time of their formation. The results obtained for DSDP Leg 34 basalts indicate that lowering of K-Ar dates, which is related to potassium addition by weathering, is a major cause of uncertainty in obtaining reliable K-Ar dates for deep-sea rocks. It could not be determined if the potassium addition to the basalts occurred at the time of formation, t_o, or continuously from t_o to the present. Calculations show that sediment cover is not a significant barrier to the diffusion of potassium into the basalt. 40Ar loss contributes, at least in part, to the lowering of the K-Ar date in rocks that have added potassium. The meaning of the K-Ar results obtained for DSDP Legs 35 and 2 basalts could not be unambiguously established. Because of the problems involved, caution must be used in interpreting the meaning of conventional K-Ar dates for deep-sea rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled analyses of n-alkane biomarkers and plant macrofossils from a peat plateau deposit in the northeast European Russian Arctic were carried out to assess the effects of past hydrology on the molecular contributions of plants to the peat. The n-alkane biomarkers accumulated over 9.6 kyr of local paleohydrological changes in this complex peat profile in which a succession of vegetation changes occurred during a transition from a wet fen to a relatively dry peat plateau bog. This study shows that the contribution of the n-C31 alkane from rootlets to peat layers rich in fine and dark roots is important. The results further indicate that the n-alkane Paq and n-C23/n-C29 biomarker proxies that have been useful to reconstruct past water table levels in many peat deposits can be misleading when the contributions of Betula and Sphagnum fuscum to the peat are large. Under these conditions, the C23/(C27 + C31) n-alkane ratio seems to correct for the presence of Betula and S. fuscum and provides a better description for the relative amounts of moisture. The average chain length (ACL) n-alkane proxy also appears to be a good paleohydrology proxy in having larger values during dry and cold conditions in this Arctic bog setting.