572 resultados para 83-504B
Resumo:
A detailed study of physical properties was made on core samples from Deep Sea Drilling Project Hole 504B. The measured properties are density, porosity, sonic velocity, electrical resistivity, and fluid permeability. Basalts from this young oceanic crust have higher density and sonic velocity than the average DSDP basalts. Porosity (and temperature) dependences of physical properties are given by V = Vo - a-phi; roo = roo-0 exp(E*/RT)phi**-q; k = k0' phi**2q-1; where V is the sonic velocity (km/s), Vo = 6.45 (km/s), a = 0.111 (km/s %), phi is the porosity (%), roo is the electrical resistivity (ohm m), roo-0 = 0.002 (ohm m), E* = 2.7 (Kcal/mol) for fresh basalts, RT has its usual meaning, q = 1.67 ± 0.27, k is the permeability, k0' = (1 to about 10) x 10**-12 (cm**2). Porosity distribution in the crust in this area is estimated by combining the seismic velocity distribution and velocity-porosity relation. Because of the rapid decrease in porosity with depth, resistivity increases and permeability decreases rapidly with depth. The decreasing rate of permeability with increasing depth is approximately given by k(cm**2) = 2 x 10**-10 exp(-z (km)/0.3).
Resumo:
Magnetic properties measurements were performed on 47 samples drilled during Leg 111 of the Ocean Drilling Program and oxide petrography was studied in 32 samples taken at depths throughout the sheeted dike complex in Hole 504B. Integration of these data with results from previous DSDP legs shows that while natural remanent magnetization is constant with depth, magnetic susceptibility increases and median demagnetizing field and the Q ratio decrease with depth in the section. These trends appear to be a result of an increase in deuteric oxidation and a decrease in hydrothermal alteration of primary titanomagnetite with depth. A distinct change in stable magnetic inclination occurs between the extrusive basalts and the sheeted dikes and may be a result of tectonic rotation of the upper extrusive basalts.