873 resultados para 175-1077B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiproxy approach including the use of stable isotopes, magnetic characterization analyses, and organic geochemistry has been adopted to consider factors such as productivity and terrigenous input over the past 1.5 m.y. at two areas off the western coast of Africa. These factors can, in turn, be used to consider variability in ocean circulation and upwelling in addition to changes in climate on the African continent. In particular, studies focused on the influence of glacial-interglacial cycles and evidence for the mid-Pleistocene revolution (MPR), a complex change in climate that occurred at ~1 Ma. A comparison of the records from the two areas drilled during Ocean Drilling Program Leg 175, the Congo Basin, at a latitude of 5°S (Holes 1076A and 1077A), and the Walvis Ridge, at 17°S (Hole 1081A), demonstrates that these sites are affected by different localized factors. The sites in the Congo Basin are strongly influenced by freshwater and sediment from the Congo River, whereas the site at the Walvis Ridge is located in the center of oceanic upwelling and contains a more marine signal. Evidence also suggests that the two sites responded differently to both long- and short-term climatic variations. In particular, the response at the Walvis Ridge to the MPR occurred over an extended period, from 1.1 to 0.8 Ma, and was associated with a change in the dominant source of terrigenous input to the site in conjunction with a change in the productivity signal. In the Congo Basin, the response to the MPR was more rapid, occurring between 0.9 and 0.8 Ma. During this period, the influence of the Congo River became significant. However, productivity records only began to respond toward the end of this interval, at 0.8 Ma.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the strength of coastal upwelling in the South East Atlantic Ocean and summer monsoonal rains over South Africa are controlled by the regional atmospheric circulation regime. Although information about these parameters exists for the last glacial period, little detailed information exists for older time periods. New information from ODP Site 1085 for Marine Isotope Stages (MIS) 12-10 shows that glacial-interglacial productivity trends linked to upwelling variability followed a pattern similar to the last glacial cycle, with maximums shortly before glacial maxima, and minimums shortly before glacial terminations. During the MIS-11/10 transition, several periodic oscillations in productivity and monsoonal proxies are best explained by southwards shifts in the southern sub-tropical high-pressure cells followed by abrupt northwards shifts. Comparison to coeval sea-surface temperature measurements suggests that these monsoonal cycles were tightly coupled to anti-phased hemispheric climate change, with an intensified summer monsoon during periods of Northern (Southern) Hemisphere cooling (warming). The timing of these events suggests a pacing by insolation over precession periods. A lack of similar regional circulation shifts during the MIS-13/12 transition is likely due to the large equatorwards shift in the tropical convection zone that occurred during this extreme glaciation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: