160 resultados para 12-methyl-Tetradecanoic acid of total fatty acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-matter-rich Upper Cretaceous claystones from DSDP Hole 603B, lower continental rise, had organic carbon values ranging from 1.7 to 13.7%, C/N ratios from 32 to 72, and d13C values from -23.5 to -27.1 per mil. Lipid class maxima for the unbound alkanes (C29 and C31), unbound fatty acids (C28 and C30), and bound fatty acids (C24, C26 , and C28) and the strong odd-carbon and even-carbon preferences, respectively, suggested that the organic matter in these sediments was partially the result of input from continental plant waxes. Transport of the organic-matter-rich sediments to the deep sea from the near-shore environment probably resulted from turbiditic flow under oxygen-stressed conditions.

Relevância:

100.00% 100.00%

Publicador: