132 resultados para 106
Resumo:
Basalts in Hole 648B, located in the rift valley of the Mid-Atlantic Ridge at 23°N in crust estimated to be less than 100,000 years old, are mainly fresh, but small amounts of secondary phases are found on fracture surfaces and in alteration halos within the rocks. The halos are defined by dark bands 1-4 mm thick that have developed parallel to fracture surfaces or pillow margins and which in some cases have migrated some centimeters into the rock. The dark bands are the principal locus of secondary phases. The secondary phases are olive-green and yellow protoceladonites, of composition and structure intermediate between celadonite and iron-rich saponite, red (Mn-poor) to opaque (Mn-rich) iron oxyhydroxides, mixtures of protoceladonite and iron oxyhydroxide, and rare manganese oxides. These phases occur mainly as linings or fillings of open spaces in the basalt within the dark bands. Sulfides and intersertal glass are the only primary phases that can be seen to have been altered. Where dark bands have migrated into the rock, the rock behind the advancing band is almost devoid of secondary phases, implying redissolution. The potassium and magnesium in the secondary phases could have been supplied from ambient seawater. The aluminum in the protoceladonites must have been derived from local reaction of intergranular glass. The source of iron and silica could have been intergranular glass or low temperature mineralizing solutions of the type responsible for the formation of deposits of manganese oxides and iron oxyhydroxides and silicates on the seafloor.
Resumo:
Ferromanganese concretions from ten stations in the Barents Sea have been analysed for 24 elements. The deposits occur as discoidal and flat concretions and as coatings, in the latter case on lithified or detrital material or as extensive pavements on the Svalbard shelf. The concretions are compositionally similar to Baltic concretions but differ considerably from deep-ocean nodules, particularly in Cu, Ni and Co contents. Statistical analyses reveal distinct correlations between Mn, Na, Ba, Ni and Cu; the Mn-rich coatings showed enrichment of Mo, Zn and possibly Co in a Mn-phase. The iron phase holds high concretions of P and As. Two iron-rich concretions with high contents of P, Ca, Sr, Y, Yb and La were found east and northeast of Spitsbergen Banken, probably indicating upwelling of nutrient-rich, cold polar water along the Svalbard shelf.
Resumo:
CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km) for carbon fixation (dissolved inorganic carbon, DIC) increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3- or/and CO2 and down-regulated carbon concentrating mechanism (CCM). In the high CO2 grown cells, the electron transport rate from photosystem II (PSII) was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.
Resumo:
To detect and track the impact of large-scale environmental changes in a the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the Alfred- Wegener-Institute for Polar and Marine Research (AWI) established the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. Virtually undisturbed sediment samples have been taken using a video-guided multiple corer (MUC) at 13 HAUSGARTEN stations along a bathymetric (1,000 - 4,000 m water depth) and a latitudinal transect in 2,500 m water depth as well as two stations at 230 and 1,200 m water depth within the framework of the KONGHAU project. Various biogenic sediment compounds were analyzed to estimate the input of organic matter from phytodetritus sedimentation, benthic activities (e.g. bacterial exoenzymatic activity), and the total biomass of the smallest sediment-inhabiting organisms (size range: bacteria to meiofauna).