761 resultados para ð18O
Resumo:
A 181 m deep ice core drilled in 1994/95 on the south dome of Berkner Island, Antarctica, was analyzed for stable isotopes, major ions and microparticle concentrations. Samples for ion chromatography were prepared by using a novel technique of filling decontaminated sample from a device for continuous ice-core melting directly into the sample vials. The core was dated through identification of volcanic horizons and interpolative layer counting. The core, together with a similar core from the north dome, reveals a 1000 year history of relatively stable climate. Temporal variations in the two cores deviate from each other owing to changing patterns of regional-scale circulation; the best correspondence between them is found for MSA-. delta18O, accumulation rate and a sea-salt proxy show only negligible correlation, which suggests a complex meteorological setting. Increasing annual accumulation is observed for the last 100 years. A period of increased sea-salt concentrations started around AD 1405, as has also been observed in other cores. Microparticle concentrations are on average 1220 particles (>=1.0 ?m diameter)/mL; they are enhanced from AD 1200 to 1350, possibly because of a higher atmospheric mineral dust load or because local volcanic activity was stronger than previously thought. Microparticles and NH4+show marked but multiple and very irregular sub-annual peaks; long-term stacking of 1 year data intervals yields seasonal maxima in austral spring or mid-summer, respectively. Post-depositional redistribution was observed for MSA, NO3- and F- at volcanic horizons.
Dissolved organic carbon (DOC) in Arctic ground ice, from northwest Canada, east Siberia, and Alaska
Resumo:
Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.
Resumo:
Simple glaciological conditions at Dome C in east Antarctica have made possible a more detailed and accurate interpretation of an ice core to 950 m depth spanning some 32,000 yr than that obtained from earlier ice cores. Dated events in comparable marine core has enabled the reduction of accumulation rate during the last ice age to be estimated. Climatic events recorded in the ice core indicate that the warmest Holocene period in the Southern Hemisphere occurred at an earlier date than in the Northern Hemisphere.
Resumo:
Twenty ice cores drilled in medium to high accumulation areas of the Greenland ice sheet have been used to extract seasonally resolved stable isotope records. Relationships between the seasonal stable isotope data and Greenland and Icelandic temperatures as well as atmospheric flow are investigated for the past 150-200 years. The winter season stable isotope data are found to be influenced by the North Atlantic Oscillation (NAO) and very closely related to SW Greenland temperatures. The linear correlation between the first principal component of the winter season stable isotope data and Greenland winter temperatures is 0.71 for seasonally resolved data and 0.83 for decadally filtered data. The summer season stable isotope data display higher correlations with Stykkisholmur summer temperatures and North Atlantic SST conditions than with SW Greenland temperatures. The linear correlation between Stykkisholmur summer temperatures and the first principal component of the summer season stable isotope data is 0.56, increasing to 0.66 for decadally filtered data. Winter season stable isotope data from ice core records that reach more than 1400 years back in time suggest that the warm period that began in the 1920s raised southern Greenland temperatures to the same level as those that prevailed during the warmest intervals of the Medieval Warm Period some 900-1300 years ago. This observation is supported by a southern Greenland ice core borehole temperature inversion. As Greenland borehole temperature inversions are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales.
Resumo:
Petrographic descriptions and stable oxygen and carbon isotope compositions of microsamples of Campanian-age sediment gravity-flow deposits from Northeast Providence Channel, Bahamas, indicate deep-marine cementation of shallow-marine skeletal grains that were transported to the channel during the Late Cretaceous. Shallow-marine components are represented by mollusks, especially rudists, and shallow-water benthic foraminifers as well as sparse echinoderm and algal grains. The sole evidence of diagenesis in shallow-marine environments consists of micrite envelopes around skeletal grains. Shallow-marine skeletal grains have mean stable isotope values of -3.1 per mil d18O and +2.6 per mil d13C. The d18O values are consistent with precipitation in equilibrium with warm (20°-30°C), shallow-marine water. Deep-marine components are represented by equant calcite spar cements and rip-up clasts of slope sediments. Spar cements, exhibiting hexagonal morphology with scalenohedral terminations, most commonly occur as thin isopachous linings in the abundant porosity. Deep-marine cements have mean stable isotope values of - 1.1 per mil d18O and +2.7 per mil d13C. Deep-marine cements are 18O-enriched relative to shallow-marine skeletal grains, consistent with precipitation in equilibrium with colder (10°-20°C), deep-marine waters. The cement .source during lithification appears to have been dissolution of aragonite and high-magnesium calcite skeletal grains, which made up part of the transported sediment. Interbedded periplatform ooze remains uncemented, or poorly cemented, probably because of lower permeability. Equant spar cements that occur in gravity-flow deposits recovered from Hole 634A have stable isotope compositions similar to spars in Lower and mid-Cretaceous shallow-water limestones exposed on the Bahama Escarpment, to Campanian-Paleocene deep-marine hardgrounds recovered during DSDP Leg 15 in the Caribbean, and to spars in Aptian-Albian talus deposits at the base of the Campeche Escarpment recovered during DSDP Leg 77.