593 resultados para trace elements in minerals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace-element content in igneous quartz from granitoids of different geochemical types from Bohemian Massif (Central Evrope) was investigated using the laser ablation ICP-MS technique. Two laboratories (Geological Survey of Norway, Trondheim, and Institute of Geology of the Academy of Science of Czech Republic, Praha) were involved in the trace-element (Li, Be, B, Mn, Ge, Rb, Ba, Pb, Mg, Al, P, Ca, Ti, Fe, and Sn) analyses of quartz (altogether, ~300 analyses of 17 rock samples). About 200 representative analyses of quartz are given in Tables 1 and 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eastern tropical Atlantic benthic foraminiferal Ba/Ca and Cd/Ca data from core V30-949 (3093 m) reveal large inferred changes in nutrient concentrations of deep Atlantic waters during the last 250 kyr. Relative changes in North Atlantic Deep Water contribution to this site are estimated by scaling the V30-49 Cd/Ca record to values of modern end-member water masses; these estimates agree well with the relative structure and timing of circulation changes in the eastern tropical Atlantic reconstructed from a d13C record-based mixing model (Raymo et al., 1997, doi:10.1029/97PA01019). Temporal differences between V30-49 Cd/Ca and Ba/Ca records suggest that the Ba/Ca record reflects changes in circulation with an additional increase in the Ba composition of deep Atlantic water masses during glacial episodes, possibly resulting from increased productivity. Similarity between the d13C and Ba/Ca records suggests that carbon isotopes in the deep glacial Atlantic also reflect productivity increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.