237 resultados para sulphide ore
Resumo:
A quantitative model of development of magmatic and ore-magmatic systems under crests of mid-ocean ridges is constructed. Correct physical models of melting zone formation in approximation to active spreading, non-stationary dynamics of magma intrusion from a center of generation, filling of magma chambers of various shapes, feeding of fissure-type volcanoes, and retrograde boiling of melts during solidification of intrusive bodies beneath axial zones of spreading in crests of ridges are proposed. Physicochemical and mathematical theories of disintegration of multi-component solutions, growth of liquational drops of ore melts, and sublimation of components from magmatic gases are elaborated. Methods for constructing physically correct models of heat and mass transfer in heterophase media are devised. Modeling of development of magmatic and ore-magmatic systems on the basis of the Usov-Kuznetsov facies method and the Pospelov system approach are advanced. For quantitative models numerical circuits are developed and numerical experiments are carried out.
Resumo:
A representative collection of hydrothermal manifestations was sampled practically from all hydrothermal mounds of the Broken Spur hydrothermal vent field with use of the Mir manned submersibles during three cruises of R/V Akademik Mstislav Keldysh. Mineral associations characteristic for different morphological types of sulfide ores from hydrothermal pipes, plates, and diffusers are assessed. Particular attention is paid to distribution of minor elements and their distribution patterns determined by mineralogical zonation. Measured isotopic composition of sulfur in sulfide minerals varies from 0.4 to 5.2 per mil that indicates their similarity with ores from the Snake Pit vent field and is related to dilution of hot ore-bearing solutions by seawater and reduction of water sulfate ions to H2S with heavy isotopic composition.
Resumo:
The trace element content of different bog ores has been measured and it appeared that most of these elements are enriched in the manganiferous bog ores as compared with the ferriferous ones. The manganiferous bog ores have also proved to have a higher radioactivity than the ferriferous ones.
Resumo:
The distribution of methane and hydrogen sulfide concentrations in sediments of various basins of the Baltic Sea was investigated during 4 cruises in 1995 and 1996. Significant differences in the concentrations of both compounds were recorded between the basins and also between different areas within the Gotland Deep. High-methane sediments with distinctly increasing concentrations from the surface to deeper layers were distinguished from low-methane sediments without a clear gradient. Methane concentrations exhibited a fair correlation with the sediment accumulation rate, determined by measuring the total thickness of the post-Ancylus Holocene sequence on echosounding profiles in the Gotland Deep. Only weak correlations were observed with the content of organic matter in the surface layers of the sediments. Hydrogen sulfide concentrations in the sediments showed a positive correlation with methane concentrations, but, in contrast to methane concentrations, were strongly influenced by the transition from oxic to anoxic conditions in the water column between 1995 and 1996. Sediments in the deepest part of the Gotland Basin (>237 m water depth), covering an area of approximately 35 km**2, were characterized by especially high accumulation rates (>70 cm/ka) and high methane and hydrogen sulfide contents. Concentrations of these compounds decreased rapidly towards the slope of the basin.
Resumo:
New information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition. Nodule abundance (percent of sea floor covered) varies greatly, according to photographs from eight stations and data from other sources. All estimates considered reliable are plotted on a map of the region. Similar maps show the average content of Ni, Cu, Mn and Co at 89 stations from which three or more nodules were analyzed. Variations in nodule metal content at each station are shown graphically in an appendix, where data on nodule sizes are also given. Results of new analyses of 420 nodules from 93 stations for mn, fe, ni, cu, CO, and zn are listed in another appendix. Relatively high Ni + Cu content is restricted chiefly to four groups of stations in the equatorial region, where group averages are 1.86, 1.99, 2.47, and 2.55 weight-percent. Prepared for United States Department of the Interior, Bureau of Mines. Grant no. GO284008-02-MAS. - NTIS PB82-142571.
Resumo:
Results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules from diverse bioproductive zones of the World Ocean were considered. It was found that sorption behavior of these minerals was similar to that of ore minerals from ferromanganese nodules and low-temperature hydrothermal crusts. The exchange complex of minerals in the micronodules includes the major (Na**+, K**+, Ca**2+, Mg**2+, and Mn**2+) and subordinate (Ni**2+, Cu**2+, Co**2+, Pb**2+, and others) cations. Reactivity of theses cations increases from Pb**2+ and Co**2+ to Na**+ and Ca**2+. Exchange capacity of micronodule minerals increases from alkali to heavy metal cations. Capacity of iron and manganese minerals in oceanic micronodules increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite ~= Fe-vernadite + Mn-feroxyhyte. Obtained data supplement available information on ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in redistribution of metal cations at the bottom water - sediment interface during micronodule formation and growth.
Resumo:
The Central gold belt of peninsular Malaysia comprises a number of gold deposits located in the east of the N-S striking Bentong-Raub Suture Zone. The Tersang gold deposit is one of the gold deposits in the gold belt and hosted in sandstone, rhyolite and breccia units. The deposit has an inferred resource of 528,000 ounces of gold. The geochronology of the Tersang deposit has been newly constrained by LA ICP-MS U-Pb zircon dating. The maximum depositional age of the host sedimentary rocks ranges from Early Carboniferous to Early Permian (261.5 ± 4.9 Ma to 333.5 ± 2.5 Ma) for the host sandstone and Late Triassic for the rhyolite intrusion (218.8 ± 1.7 Ma). Textural characteristics of pyrite have revealed five types including (1) Euhedral to subhedral pyrite with internal fracturing and porous cores located in the sandstone layers (pyrite 1); (2) Anhedral pyrite overgrowths on pyrite 1 and disseminated in stage 1 vein (pyrite 2); (3) Fracture-filled or vein pyrite located in stages 1 and 2 vein (pyrite 3); (4) Euhedral pyrite with internal fractures also located in stage 2 vein (pyrite 4); and (5) Subhedral clean pyrite located in the rhyolite intrusion (pyrite 5). Based on pyrite mapping and spot analyses, two main stages of gold enrichment are documented from the Tersang gold deposit. Gold in sandstone-hosted pyrite 1 (mean 4.3 ppm) shows best correlation with Bi and Pb (as evidenced on pyrite maps). In addition, gold in pyrite 3 (mean 8 ppm) located in stage 2 vein shows a good correlation with As, Ag, Sb, Cu, Tl, and Pb. In terms of gold exploration, we suggest that elements such as As, Ag, Sb, Cu, Tl, Bi, and Pb associated with Au may serve as vectoring tools in gold exploration. Our new geological, structural, geochemical and isotopic data together with mineral paragenesis, pyrite chemistry and ore fluid characteristics indicate that the Tersang gold deposit is comparable to a sediment-hosted gold deposit. Our new genetic model suggests deposition of the Permo-Carboniferous sediments followed by intrusion of rhyolitic magma in the Late Triassic. At a later stage, gold mineralisation overprinted the rhyolite intrusion and the sandstone.
(Table 4) Chemical composition of sphalerite from sulfide edifices of the Rainbow hydrothermal field