207 resultados para perovskite crystal fuel additive rare earth transition metal oxide
Resumo:
Site 598 sediments were analyzed to determine the factors controlling the rare earth element (REE) geochemistry of the hydrothermal component. Site 598 provides an ideal sample suite for this purpose. Samples are lithologically "simple," primarily consisting of a hydrothermal component and biogenous carbonates. Also, the composition of the hydrothermal component appears unchanged through time or space, and the site appears to have undergone minimal diagenetic alteration. The shale-normalized REE patterns are similar to the pattern of seawater, varying only in absolute REE content. The REE content increases with distance from the paleorise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Results presented are consistent with the following model: the source mechanism for the REE content of hydrothermal sediments is scavenging by Fe oxyhydroxides from seawater. With prolonged exposure to seawater resulting from transport far from the injection point and/or long residence at the seawatersediment interface, the absolute REE content of hydrothermal sediments increases and becomes more like seawater.
Resumo:
Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.
Resumo:
Contents of rare earth elements (REE) in standard samples of Fe-Mn nodules (SDO-5, 6), Fe-Mn crust (SDO-7), and red clay (SDO-9) have been determined by ICP-MS and instrumental neutron activation analysis. Reproducibility of ICP-MS was 5-6%. These results are discussed and compared with other data. It has been found that distribution of REE in the standard samples of ocean Fe-Mn ores and red clay is highly homogenous.
Resumo:
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50-250, 250-500, and >500 ?m), coexisting macronodules, and host sediments were studied. Samples were collected at three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of surface waters. Influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, Ce concentration inversely correlates with micronodule size and drops to the lowest value in macronodules and host sediments. Decrease of Ce concentration is generally accompanied by Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with micronodule sizes. Contribution of the diagenetic source is maximal for macronodules. REE composition distinctions for micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. Relationship and general trend in chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.
Resumo:
Contents of Fe, Mn, Al, P, and rare earth elements (REE) in ferruginous nodules and host sediments of the eastern Barents Sea were studied. A direct Fe-P correlation in reactive components of the sediments and nodules was found. The nodules were shown to be formed through Fe(II) oxidation in the surface layer of sediments and cementation of terrigenous fraction of sediments by Fe(III) oxyhydroxides. The latter accumulate phosphorus due to processes of sorption - co-precipitation, by forming Fe(III) hydrophosphates. REE composition in the sediments and nodules normalized to NASC contents is characterized by increased proportion of light REE that may be caused by regional features of their sources. Due to significant share of terrigenous matter in the Fe nodules (up to 65% for Nd), REE composition of bulk samples is similar to that of host sediments. A negative cerium anomaly in composition of reactive REE may result from REE sorption from seawater. REE bulk composition of a ferruginous crust is closer to that of seawater than one of the ferruginous nodules from the sediments because of essentially lower content of diluent terrigenous matter.
Resumo:
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46-5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31-8.50). These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a 'hot spot' type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline arid more enriched in incompatible elements. The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.
Resumo:
We report 48 analyses of rare-earth elements (REE) and 15 143Nd/144Nd and 87Sr/86Sr analyses for basalts from the eight holes drilled during Leg 82. Discrete and distinct REE patterns and 143Nd/144Nd ratios characterize the eight holes, with little variation observed downhole except in Holes 561 and 558, thus suggesting dominantly long-term temporal and large-scale spatial variations in the mantle source of these basalts beneath the Mid-Atlantic Ridge over the last 35 Ma of its spreading activity. There is a good inverse correlation between 143Nd/144Nd and (La/Sm)EF with one exception in Hole 558 (approximately 35 Ma), the latter suggesting a recent (35 Ma) light REE depletion event, perhaps caused by dynamic or fractional melting. Short-term temporal and small-scale spatial mantle source variability is also evident in Hole 561 (approximately 18 Ma), which has rapid fluctuations in REE patterns and 143Nd/144Nd ratios (suggesting rapid transfer of magma from the time of melting) and is evidence contrary to the presence of a well-mixed magma chamber at this particular site and time. The mantle source variations noted can be interpreted within two extreme models. The first model invokes a convecting mantle depleted in large ion lithophile elements (LILE) and containing lumps (or veins) of LILE-enriched material of various shapes and sizes, passively and randomly distributed throughout. A second more restrictive model considers the interaction of fixed mantle plumes and the LILE-depleted asthenosphere flowing towards a migrating Mid- Atlantic Ridge (MAR) axis. With the exception of Hole 558 and the uncertainties of reconstructions of absolute plate movements in the region, the observed variations can be explained by two hot spots; the nearly ridge-centered Azores hot spot (plume) and another hot spot located beneath the African plate that may be affecting the source of basalts currently erupting at the MAR axis at 35°N and which, in the past, would have produced the New England chain of seamounts on the North American plate and (later) the Atlantis-Great Meteor chain on the African plate. Basalts erupted south of the Hayes Fracture Zone have not been affected by either of these two hot spots over the last 35 Ma and appear to have been continuously derived from the LILE-depleted source. Subaxial flow downridge from the Azores plume appears to have started 9 Ma, on the basis of the southward converging V-shaped time-transgressive ridges branching from the Pico and Corves Island, or not earlier than 16 Ma, on the basis of the geochemical results. Variations within Hole 558 remains unexplained by the latter model, unless we hypothesize a third hot spot.
(Table 4) Rare earth element abundances of representative Ferrar samples from Northern Victoria Land