112 resultados para penaeid shrimp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 µatm) or significantly elevated (1,311 µatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 µatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; Delta calcification/Delta Omega was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study of melt inclusions and SHRIMP dating of zircons from trondhjemite gneisses of the sequence VIII from the Kola Superdeep Borehole has revealed presence of old primary magmatic crystals with age up to 2887+/-15 Ma. This is not consistent with the previous view, according to which the oldest zircons from the Archean Complex in SG-3 are products of granulite metamorphism. Primary magmatic zircons of early generation (from 2887 to 2842 Ma) formed in deep-seated magma chambers during partial crystallization of CO2-saturated trondhjemite estimates on duration of generation of tonalite-trondhjemite-granite melts through partial melting of mafic rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how seafood will be influenced by coming environmental changes such as ocean acidification is a research priority. One major gap in knowledge relates to the fact that many experiments are not considering relevant end points related directly to production (e.g., size, survival) and product quality (e.g., sensory quality) that can have important repercussions for consumers and the seafood market. The aim of this experiment was to compare the survival and sensory quality of the adult northern shrimp (Pandalus borealis) exposed for 3 wk to a temperature at the extreme of its thermal tolerance (11°C) and 2 pH treatments: pH 8.0 (the current average pH at the sampling site) and pH 7.5 (which is out of the current natural variability and relevant to near-future ocean acidification). Results show that decreased pH increased mortality significantly, by 63%. Sensory quality was assessed through semiqualitative scoring by a panel of 30 local connoisseurs. They were asked to rate 4 shrimp (2 from each pH treatment) for 3 parameters: appearance, texture and taste. Decreased pH reduced the score significantly for appearance and taste, but not texture. As a consequence, shrimp maintained in pH8.0 had a 3.4 times increased probability to be scored as the best shrimp on the plate, whereas shrimp from the pH 7.5 treatment had a 2.6 times more chance to be scored as the least desirable shrimp on the plate. These results help to prove the concept that ocean acidification can modulate sensory quality of the northern shrimp P. borealis. More research is now needed to evaluate impacts on other seafood species, socioeconomic consequences, and potential options.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.