156 resultados para multi-component and multi-site adsorption
Resumo:
The principal objective of Leg 187 was to locate the Indian/Pacific mantle boundary by sampling and analyzing 8- to 28-Ma seafloor basalts to the north of the Australian Antarctic Discordance (AAD). In this paper we present Sr and Nd isotopic data from basaltic glasses recovered from the 13 sites drilled during Leg 187. Our data show that the boundary region is characterized by a gradual east-west increase in 87Sr/86Sr, with a corresponding decrease in 143Nd/144Nd across a 150-km-wide zone located east and west of the 127°E Fracture Zone. The Sr-Nd isotopic composition of glasses therefore confirms the general conclusions derived by the Leg 187 shipboard scientific party in that the mantle boundary follows a west-pointing, V-shaped depth anomaly that stretches across the ocean floor from the Australian to the Antarctic continental margins. We document that two systematic trends of covariation between 87Sr/86Sr and 143Nd/144Nd can be distinguished, suggesting that the basalts sampled during Leg 187 formed through the interaction of three contrasting source components: (1) a component that lies within the broad spectrum of Indian-type mantle compositions, (2) a boundary component, and (3) a Pacific-type mantle component. The variations in elemental and isotopic compositions indicate that the boundary component represents a distinct mantle region that is associated with the boundary between the Pacific and the Indian mid-ocean-ridge basalt (MORB) sources rather than a dispersed mantle heterogeneity that was preferentially extracted in the boundary region. However, the origin of the boundary component remains an open question. The three components are not randomly intermixed. The Indian and the Pacific mantle sources both interacted with the boundary component, but they seem not to have interacted directly with each other. Large local variability in isotopic compositions of lavas from the mantle boundary region demonstrates that magma extraction processes were unable to homogenize the isotopic contrasts present in the mantle source in this region. Systematic variations in rare earth element (REE) concentrations across the depth anomaly cannot be explained solely by variations in source composition. The observed variations may be explained by an eastward increase and westward decrease in the degree of melting toward the mantle boundary region, compatible with a cooling of the Pacific mantle and a heating of the Indian mantle toward the mantle boundary.
Resumo:
Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibit a remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are reflected in physical property values. This alteration may have been due to high temperatures in the sediment. In most of Site 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm**3, porosity 80%, and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to 1.40 g/cm**3, porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases to values in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermal resistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less.
Resumo:
The Curie temperature and thermomagnetic behavior of wholerock samples were measured in basalts recovered from Sites 442, 443, and 444 of DSDP Leg 58 in the Shikoku Basin, and from Site 446 in the Daito Basin, north Philippine Sea. Chemical composition and microscopic features of opaque oxides in the same samples were also investigated. Degree and mode of oxidation of titanomagnetite vary irrespective of site, lithology, or magnetic polarity, and no systematic correlation has been found between any two of these characteristics. Magnetic properties are systematically different between massive flows recovered at Hole 444A (Shikoku Basin) and Hole 446A (Daito Basin), although the controlling factor is unknown.
Resumo:
Well-preserved radiolarian assemblages of late middle Miocene to early Pliocene age are found in Ocean Drilling Program (ODP) Hole 1138A (Cores 183-1138A-12R to 20R), which was rotary drilled into the Central Kerguelen Plateau. The faunas are typical for Antarctic assemblages of this time interval, and the site appears to have been south of the Polar Front during the time period studied. Despite only moderate drilling recovery of the section, most late middle to early Pliocene radiolarian zones are present, although at the sample resolution used, subzones could not be identified. A significant discontinuity in the section is present at the boundary between lithologic Units I and II (between Cores 183-1138A-12R and 13R), corresponding to an interval from at least 4.6 to 6.1 Ma. Mixed late Miocene-early Pliocene assemblages are seen in the base of Core 183-1138A-12R (Sample 183-1138A-12R-3, 20 cm), and the overlying basal Pliocene Tau Zone appears to be absent. It cannot be determined if the discontinuity is due to incomplete recovery of the section and drilling disturbance or if it reflects a primary sedimentary structure - a hiatus or interval of condensed sedimentation.
Resumo:
The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.
Resumo:
A most significant finding of the ODP Leg 107 drilling campaign was the recovery of at least 56 distinct sapropel intervals in upper Pliocene to Pleistocene sediments of six sites drilled in the Tyrrhenian Sea. Except for 3 repots of disturbed organic-rich sediments - recovered in Core 201 of the Swedish Deep-Sea Expedition, in Core 2R-1,107 cm of Site 373 (Leg 13 DSDP) and at Site 373, Core 1-2,O-5 cm of DSDP Leg 42A - sapropels had previously only been described from the eastern Mediterranean and the Black Sea. Scientific deep-sea drilling in the Tyrrhenian Sea during DSDP Legs 13 and 42A apparently missed most of these deposits due to spot coring and rotary drilling techniques; high sedimentation rates may have precluded recovery by conventional gravity coring devices. The recovery of multiple layers of sapropels and sapropelic sediments in the Tyrrhenian Sea demonstrates that oceanographic conditions conducive to sapropel formation were not confined to the Black Sea and eastern Mediterranean, but occurred sporadically and possibly simultaneously in the entire Mediterranean during the Pliocene and Pleistocene. In the light of this finding, previous models of sapropel genesis may need reconsideration. In this paper, we present some initial data on the Tyrrhenian sapropels and suggest some implications of their massive occurrence in the western Mediterranean realm. We end by outlining possible causes for deposition of sapropels in an attempt to revive the interest in sapropels and their paleoceanographic significance.
Resumo:
From 0 to 277 m at Site 530 are found Holocene to Miocene diatom ooze, nannofossil ooze, marl, clay, and debrisflow deposits; from 277 to 467 m are Miocene to Oligocene mud; from 467 to 1103 m are Eocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, sandstone, and black shale in the lower portion; from 1103 to 1121 m are basalts. In the interval from 0 to 467 m, in Holocene to Oligocene pelagic oozes, marl, clay, debris flows, and mud, velocities are 1.5 to 1.8 km/s; below 200 m velocities increase irregularly with increasing depth. From 0 to 100 m, in Holocene to Pleistocene diatom and nannofossil oozes (excluding debris flows), velocities are approximately equivalent to that of the interstitial seawater, and thus acoustic reflections in the upper 100 m are primarily caused by variations in density and porosity. Below 100 or 200 m, acoustic reflections are caused by variations in both velocity and density. From 100 to 467 m, in Miocene-Oligocene nannofossil ooze, clay, marl, debris flows, and mud, acoustic anisotropy irregularly increases to 10%, with 2 to 5% being typical. From 467 to 1103 m in Paleocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, and black shale in the lower portion of the hole, velocities range from 1.6 to 5.48 km/s, and acoustic anisotropies are as great as 47% (1.0 km/s) faster horizontally. Mudstone and uncemented sandstone have anisotropies which irregularly increase with increasing depth from 5 to 10% (0.2 km/s). Calcareous mudstones have the greatest anisotropies, typically 35% (0.6 km/s). Below 1103 m, basalt velocities ranged from 4.68 to 4.98 km/s. A typical value is about 4.8 km/s. In situ velocities are calculated from velocity data obtained in the laboratory. These are corrected for in situ temperature, hydrostatic pressure, and porosity rebound (expansion when the overburden pressure is released). These corrections do not include rigidity variations caused by overburden pressures. These corrections affect semiconsolidated sedimentary rocks the most (up to 0.25 km/s faster). These laboratory velocities appear to be greater than the velocities from the sonic log. Reflection coefficients derived from the laboratory data, in general, agree with the major features on the seismic profiles. These indicate more potential reflectors than indicated from the reflection coefficients derived using the Gearhart-Owen Sonic Log from 625 to 940 m, because the Sonic Log data average thin beds. Porosity-density data versus depth for mud, mudstone, and pelagic oozes agree with data for similar sediments as summarized in Hamilton (1976). At depths of about 400 m and about 850 m are zones of relatively higher porosity mudstones, which may suggest anomalously high pore pressure; however, they are more probably caused by variations in grain-size distribution and lithology. Electrical resistivity (horizontal) from 625 to 950 m ranged from about 1.0 to 4.0 ohm-m, in Maestrichtian to Santonian- Coniacian mudstone, marlstone, chalk, clastic limestone, and sandstone. An interstitial-water resistivity curve did not indicate any unexpected lithology or unusual fluid or gas in the pores of the rock. These logs were above the black shale beds. From 0 to 100 m at Sites 530 and 532, the vane shear strength on undisturbed samples of Holocene-Pleistocene diatom and nannofossil ooze uniformly increases from about 80 g/cm**2 to about 800 g/cm**2. From 100 to 300 m, vane shear strength of Pleistocene-Miocene nannofossil ooze, clay, and marl are irregular versus depth with a range of 500 to 2300 g/cm**2; and at Site 532 the vane shear strength appears to decrease irregularly and slightly with increasing depth (gassy zone). Vane shear strength values of gassy samples may not be valid, for the samples may be disturbed as gas evolves, and the sediments may not be gassy at in situ depths.
Resumo:
The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.
Resumo:
Concentrations and activity ratios of uranium and thorium isotopes (234U/238U, 230Th/232Th) were determined at about 5-m intervals through the composite top 22-m sequence of Ocean Drilling Program (ODP) Hole 645 in Baffin Bay and, in the Labrador Sea, at 1-m intervals through the top 11 m of Core 84-030-003 (TWC and P) collected by the Hudson during a preliminary survey of Site 647, and also at about 2-m intervals through the composite top 22-m sequence of Hole 646. In the Labrador Sea, surficial sediments show unsupported 230Th having a 230Th/234U activity ratio of about 3. At Site 647, a regular decrease in the 230Th/232Th activity ratio was observed downcore from about 1.2 (at 1 mbsf) to about 0.4 (at ~8 mbsf), through a sequence spanning over 18O stages 2 through 8. The correlative thorium/uranium chronology and 18O stratigraphy indicate relatively constant sedimentation rates throughout the sequence. At Site 646, down Greenland slope, and at Site 645, in Baffin Bay, highly variable uranium and thorium concentrations and isotopic ratios were observed in relation to highly variable sedimentation rates. As a whole, the lower-excess observed in Baffin Bay records is indicative of very high absolute sedimentation rates in comparison with those of the Labrador Sea. These rates are confirmed by the 18O-stratigraphy and a few AMS 14C controls on handpicked foraminifers. At both Labrador Sea sites, a clear indication of an initial 230Th-excess (over the 230Th-rain from the water column) was found.
Resumo:
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59-80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219-236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day**-1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.
Resumo:
The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.
Resumo:
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46-5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31-8.50). These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a 'hot spot' type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline arid more enriched in incompatible elements. The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.
Resumo:
Late Quaternary fluctuations in the intensity of Congo River freshwater load were reconstructed using three different proxies (marine and freshwater diatoms, and the delta18O record of Globigerinoides ruber) preserved in the sediments of Ocean Drilling Program (ODP) Site 1077, located at the northern rim of the Congo River fan (5°10'S, 10°26'E). An abrupt change in the diatom assemblage is evident at Termination II: a two- to four-fold increase in (a) the relative abundance of a marine planktonic diatom tolerant of low salinity conditions (Cyclotella litoralis), and (b) in the concentration of freshwater diatoms. The microfossil data suggest a change in the environmental conditions surrounding Site 1077 from predominantly marine to mixed marine/brackish/fresh. The delta18O record of the planktic foraminifera G. ruber (pink) revealed negative deviations from the global oxygen isotope signal since Termination II which occurred during warm stage 1 and substages 3.2, 5.1, 5.3, and 5.5. Comparison of the isotopic signal of ODP Site 1077 with the record from a pelagic location (core GeoB1041 at 3°48'S, 7°05'W) confirms these results. The construction of an artificial delta18O curve using alkenone-derived sea surface temperature (SST) data from a nearby core (GeoB1008 at 6°S, 10°E) allowed us to estimate salinity and temperature effects on the ODP Site 1077 isotopic signal. Although increased SSTs may account for lighter delta18O values during warmer periods, they do not explain the extremely light values documented in the sediments of Site 1077. We used the oxygen isotope difference (Delta delta18O) between our site and GeoB1041 as a proxy for freshwater input. A general trend in the Delta delta18O was observed, with more negative values since Termination II. In addition, conspicuous Delta delta18O negative pulses coincided with periods of northern hemisphere summer insolation maxima over the African continent, suggesting an increase in the freshwater discharge from the Congo River due to enhanced precipitation on the hinterland. Here we propose that the abrupt change in environmental conditions at Site 1077 since Termination II is a consequence of a major reorganization in the depositional environment of the Congo River delta. This reorganization involved sustained equatorward displacement of the Angola-Benguela Front causing a northward deflection of the Congo River plume thus moving plume waters further north than normal and over Site 1077.
Resumo:
Deep Sea Drilling Project Leg 66 drilled eight sites along a transect across the Middle America Trench off Mexico, including continental (Sites 493 and 489), oceanic (Site 487), and trench (Site 486) reference sites and four sites (490, 492, 491, 488) in the trench inner wall. Because of their location - close to volcanic sources and subject to prevailing winds and marine currents (N to S, NW to SE) - analysis of airborne ashes intercalated within the sediments at these sites provides a reliable record of explosive volcanism in the area. Intense onshore volcanic activity in Mexico during the Oligo-Miocene has been well documented by the andesites and ignimbrites of the Sierra Madre Occidental and Sierra Madre del Sur and in the Plio-Quaternary by the andesites and basalts from the Trans-Mexican Neovolcanic Belt and the eastern border of Baja California.