236 resultados para mercury in seafood
Resumo:
This study of sediments from the Cap Timiris Canyon demonstrates that geochemical data can provide reliable age-depth correlation even of highly turbiditic cores and attempts to improve our understanding of how turbidite emplacement is linked to climatic-related sea-level changes. The canyon incises the continental margin off NW Africa and is an active conduit for turbidity currents. In sediment cores from levee and intrachannel sites turbidites make up 6-42% of sediment columns. Age models were fitted to all studied cores by correlating downcore element data to dated reference cores, once turbidite beds had been removed from the dataset. These age models enabled us to determine turbidite emplacement times. The Cap Timiris Canyon has been active at least over the last 245 kyr, with turbidite deposition seemingly linked to stage boundaries and glacial stages. The highly turbiditic core from the intrachannel site postdates to ~15 kyr and comprises Holocene and late Pleistocene sediments. Turbidite deposition at this site was associated especially with the rapid sea-level rise at the Pleistocene/Holocene transition. During the Holocene, turbidity current activity decreased but did not cease.
Resumo:
The first thorough analysis of microfossils from ore-bearing sediments of the Ashadze-1 Hydrothermal Field in the Mid-Atlantic Ridge sampled during Cruise 26 of R/V Professor Logachev in 2005 revealed substantial influence of hydrothermal processes on preservation of planktonic calcareous organisms as well as on preservation and composition of benthic foraminifera. From lateral and vertical distribution patterns and secondary alterations of microfossils it is inferred that the main phase of hydrothermal mineralization occurred in Holocene. Heavy metals (Cu, Co, Cr, and Ag) were accumulated by foraminiferal tests and in their enveloping Fe-Mn crusts. Distribution of authigenic minerals replacing foraminiferal tests demonstrates local zoning related to hydrothermal activity. There are three mineral-geochemical zones defined: sulfide zone, zone with elevated Mg content, and zone of Fe-Mn crusts.
Resumo:
Concentrations of mercury (Hg) have increased slowly in landlocked Arctic char over a 10- to 15-year period in the Arctic. Fluxes of Hg to sediments also show increases in most Arctic lakes. Correlation of Hg with trophic level (TL) was used to investigate and compare biomagnification of Hg in food webs from lakes in the Canadian Arctic sampled from 2002 to 2007. Concentrations of Hg (total Hg and methylmercury [MeHg]) in food webs were compared across longitudinal and latitudinal gradients in relation to d13C and d15N in periphyton, zooplankton, benthic invertebrates, and Arctic char of varying size-classes. Trophic magnification factors (TMFs) were calculated for the food web in each lake and related to available physical and chemical characteristics of the lakes. The relative content of MeHg increased with trophic level from 4.3 to 12.2% in periphyton, 41 to 79% in zooplankton, 59 to 72% in insects, and 74 to 100% in juvenile and adult char. The d13C signatures of adult char indicated coupling with benthic invertebrates. Cannibalism among char lengthened the food chain. Biomagnification was confirmed in all 18 lakes, with TMFs ranging from 3.5 ± 1.1 to 64.3 ± 0.8. Results indicate that TMFs and food chain length (FCL) are key factors in explaining interlake variability in biomagnification of [Hg] among different lakes.
Resumo:
A series of samples of inhabitants of hydrothermal vents were collected during the 12-th cruise of R/V Akademik Mstislav Keldysh in Guaymas Basin (the Gulf of California) and the Axial Seamount area (Juan de Fuca Ridge). Concentrations of trace and heavy metals in the tissues of Ridgeia piscesae, Riftia pachyptila, and Paralvinella palmiformis were analyzed. Neutron-activation analysis revealed significantly higher concentrations of uranium in tissues of Paralvinella palmiformis as compared to ambient seawater. Possible reasons for such phenomenon are discussed. The data obtained by neutron-activation method are compared with those obtained by atomic-absorption method for the same tissues analyzed.