389 resultados para estuaries
Resumo:
Phytoplankton biomass distribution (chlorophyll a, chl. a) and species composition (cell numbers) were investigated during three expeditions to the Kara Sea with "Akademik Boris Petrov" (BP) in 1997, 1999, and 2000. The distribution of biomass in the estuaries of Ob and Yenisei showed a similar range in 1997 (0.2 to 3.2 µg/l) and 2000 (0.4 to 3.5 ug/l); higher chl. a concentrations during these two years were found in Yenisei than in Ob. In 1999, phytoplankton biomass in the Ob and Ob Estuary was much higher than in 1997 and 2000, with maximum values above 10.0 ug chl. a/l. In 1999, biomass in Yenisei was lower (1.5 to ~5 ug/l) than in Ob but slightly higher than in 1997 and in 2000. During the expedition in 2000, the research area extended farther to the north, here, lowest phytoplankton biomass during all three years was found. Typical summer values for integrated chl.a biomass (surface to bottom) ranged between 6 and 20 mg m**-2. Strong differences existed in species composition in both rivers, the estuaries, and the open Kara Sea. In general, three or four different populations could be distinguished in surface waters: (1) freshwater diatoms together with bluegreen algae in both rivers, (2) centric and small pennate diatoms mainly brackish species in the estuaries, (3) north of 74°N, brackish/marine species dominated, i.e. in 1999 Thalassiosira cfpunctigera and Chaetoceros spp prevailed in the phytoplankton bloom in Ob. (4) At the northernmost, almost marine stations, a region with a more heterogeneous composition of unicellular plankton was encountered. We assume, we found different seasonal signals of phytoplankton development during 1997/2000 and 1999, respectively. However, the yearly fluctuation of freshwater runoff of both rivers seems to have the strongest influence on the timing and duration of phytoplankton blooms, species compositions and biomass standing stocks during summer.
Resumo:
On the base of detailed studies in the Keret' and Kem' estuaries (Karelian coast of the White Sea) in 2000-2003 a comparative analysis has been carried out. It includes: salinity and freshening of the water column, variations of suspended matter concentration and its chemical composition, current velocity and zooplankton species composition during flood- and ebb tides.
Resumo:
Variability in pH is a common occurrence in many aquatic environments, due to physical, chemical and biological processes. In coastal waters, lagoons, estuaries and inland waters, pH can change very rapidly (within seconds or hours) in addition to daily and seasonal changes. At the same time, progressive ocean acidification caused by anthropogenic CO2 emissions is superimposed on these spatial and temporal pH changes. Photosynthetic organisms are therefore unavoidably subject to significant pH variations at the cell surface. Whether this will affect their response to long-term ocean acidification is still unknown, nor is it known whether the short-term sensitivity to pH change is affected by the pCO2 to which the cells are acclimated. We posed the latter open question as our experimental hypothesis: Does acclimation to seawater acidification affect the response of phytoplankton to acute pH variations? The diatom Skeletonema costatum, commonly found in coastal and estuarine waters where short-term acute changes in pH frequently occur, was selected to test the hypothesis. Diatoms were grown at both 390 (pH 8.2, low CO2; LC) and 1000 (pH 7.9, high CO2; HC) µatm CO2 for at least 20 generations, and photosynthetic responses to short-term and acute changes in pH (between 8.2 and 7.6) were investigated. The effective quantum yield of LC-grown cells decreased by ca. 70% only when exposed to pH 7.6; this was not observed when exposed to pH 7.9 or 8.2. HC-grown cells did not show significant responses in any pH treatment. Non-photochemical quenching showed opposite trends. In general, our results indicate that while LC-grown cells are rather sensitive to acidification, HC-grown cells are relatively unresponsive in terms of photochemical performance.