123 resultados para chlorinated hydrocarbon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual concentrations and distributions of hydrocarbon gases from methane to n-heptane were measured in sediments at seven sites on Ocean Drilling Program (ODP) Leg 164. Three sites were drilled at the Cape Fear Diapir of the Carolina Rise, and one site was drilled on the Blake Ridge Diapir. Methane concentrations at these sites result from microbial generation which is influenced by the amount of pore-water sulfate and possible methane oxidation. Methane hydrate was found at the Blake Ridge Diapir site. The other hydrocarbon gases at these sites are likely the product of early microbial processes. Three sites were drilled on a transect of holes across the crest of the Blake Ridge. The base of the zone of gas-hydrate occurrence was penetrated at all three sites. Trends in hydrocarbon gas distributions suggest that methane is microbial in origin and that the hydrocarbon gas mixture is affected by diagenesis, outgassing, and, near the surface, by microbial oxidation. Methane hydrate was recovered at two of these three sites, although gas hydrate is likely present at all three sites. The method used here for determining amounts of residual hydrocarbon gases has its limitations and provides poor assessment of gas distributions, particularly in the stratigraphic interval below about ~100 mbsf. One advantage of the method, however, is that it yields sufficient quantities of gas for other studies such as isotopic determinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Cruise 49 of R/V Dmitry Mendeleev in the Kara Sea (August-September, 1993) chemical-bitumenological studies of bottom sediments were carried out. Hydrocarbons were analyzed by gas-liquid chromatography. It was found on the basis of distribution of n-alkanes and isoprenoids (pristan and phytan) that organic matter is mainly terrigenous consisting of higher plant remains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr**-1 to <1 cm yr**-1 and the sulfate/methane transition (SMT) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6-9.3 mol m**-2 yr**-1). Depth-integrated rates of bioirrigation increased from 120 cm yr**-1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr**-1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide hydrogen sulfide for chemosynthesis. Through bioirrigation, macrofauna engineer their geochemical environment and fuel upward sulfide flux via AOM. Furthermore, due to the introduction of oxygenated bottom water into the sediment via bioirrigation, the depth of the sulfide sink gradually deepens towards outer habitats. We therefore suggest that - in addition to the oxygen levels in the water column, which determine whether macrofaunal communities can develop or not - it is the depth of the SMT and thus of sulfide production that determines which chemosynthetic communities are able to exploit the sulfide at depth. We hypothesize that large vesicomyid clams, by efficiently expanding the sulfate zone down into the sediment, could cut off smaller or less mobile organisms, as e.g. small clams and sulfur bacteria, from the sulfide source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of core samples taken during Cruise 79 of Glomar Challenger, drilling offshore Morocco (Mazagan Plateau), is analyzed for their low-molecular-weight hydrocarbon contents. Fifty-four samples from DSDP Holes 544A, 545, 547A, and 547B, deep frozen on board immediately after recovery, are studied by a hydrogen-stripping/thermovaporization technique combined with capillary gas chromatography. Thirty-eight compounds in the C2-C8 molecular range, including saturated, olefinic, and aromatic hydrocarbons, are identified. Because of large differences in organic carbon contents, the total C2-C8 hydrocarbon concentrations vary from about 20 to 1500 ng/g dry sediment weight in the whole sample series. Organic-carbon normalized values are about 3.2 x 10**4 ng/g Corg for Lithologic Subunits IIIA and IIIB at Site 545 (Cenomanian to Aptian) and 1.0 x 10**5 ng/g Corg for Unit V at Site 547 (Cenomanian to Albian) reflecting the slightly more advanced maturity stage at the latter site. Values exceeding 10**5 ng/g Corg (Site 545) and 2 x 10**5 ng/g Corg (Site 547) are associated with samples that are very lean in organic carbon and are generally rich in carbonate. These samples are enriched by small amounts of gaseous hydrocarbons. A detailed study of individual hydrocarbon concentrations, plotted against depth, reveal additional indications for migration phenomena. At Site 547, for instance, the most mobile hydrocarbons studied (e.g., ethane) appear to migrate by diffusion or a related process from more than 700 m depth toward the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C2-C8 hydrocarbons (36 compounds identified) from 56 shipboard sealed, deep-frozen core samples of DSDP Leg 71, Site 511, Falkland Plateau, South Atlantic, were analyzed by a combined hydrogen stripping-thermovaporization method. Concentrations, which represent hydrocarbons dissolved in the pore water and adsorbed to the mineral surfaces of the sediment, vary from 24 ng/g of dry weight sediment in Lithologic Unit 4 to 17,400 ng/g in Lithologic Unit 6 ("black shale" unit). Likewise, the organic carbon normalized C2-C8 hydrocarbon concentrations range from 104 to 3.5 x 105 ng/g Corg. The latter value is more than one order of magnitude lower than expected for petroleum source beds in the main phase of oil generation. The low maturity at 600 meters depth is further supported by light hydrocarbon concentration ratios. The change of the kerogen type from Lithologic Unit 5 (Type III) to 6 (Type II) is evidenced by changes in the C6 and C7 hydrocarbon composition. Redistribution phenomena are observed close to the Tertiary-Cretaceous unconformity and at the contact between the "black shale" unit and the overlying Cretaceous chalks and claystones. Otherwise, the low molecular weight hydrocarbons in Hole 511 are formed in situ and remain at their place of formation. The core samples turned out to be contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures onboard Glomar Challenger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Campeche Knolls, in the southern Gulf of Mexico, lava-like flows of solidified asphalt cover more than 1 square kilometer of the rim of a dissected salt dome at a depth of 3000 meters below sea level. Chemosynthetic tubeworms and bivalves colonize the sea floor near the asphalt, which chilled and contracted after discharge. The site also includes oil seeps, gas hydrate deposits, locally anoxic sediments, and slabs of authigenic carbonate. Asphalt volcanism creates a habitat for chemosynthetic life that may be widespread at great depth in the Gulf of Mexico.