845 resultados para calcareous sinter, aqueduct, stable isotopes, Roman
Resumo:
Crystalline aggregates composed of calcium carbonate were recovered in the uppermost 50 m of Nankai Trough sediments during DSDP Leg 87A. These aggregates decomposed with time to masses of sandy calcite as determined by X-ray diffraction analysis. Petrographic and scanning electron microscopy revealed textures suggestive of a precursor phrase prior to calcite, and this precursor has been tentatively identified as the mineral ikaite, CaCO3*6H2O. Stable isotope data suggest a large component of terrigenous organic matter as the carbon source, consistent with the appearance of these aggregates in highly reducing pyritic sediments containing abundant plant remains. We propose that these nodules formed in euxinic basins on the upper part of the Trough slope under normal seafloor conditions of pressure and temperature. Calculated temperatures of formation of this phase are not unusually low. The specimens from Site 583 are the first reported occurrences of ikaite in active margin sediments.
Resumo:
Diagenesis of the fine-grained, feldspathic sandstones in the Lower Cretaceous submarine fan complex cored in DSDP Hole 603B can be considered to have occurred in three stages: (1) replacement of matrix and framework grains by pyrite, siderite, phillipsite (?), and particularly by ferroan calcite; (2) dissolution of ferroan calcite and feldspars to produce secondary macroporosity; and (3) development of sparse feldspar and quartz overgrowths, and authigenic modification of remnant matrix. Only ferroan calcite is a volumetrically important diagenetic mineral phase (up to 50 vol.%). Matrix in thin sandstone turbidite deposits has been extensively replaced by ferroan calcite. Carbon stable isotope data suggest that organic diagenesis had only a minor influence on calcite precipitation. Oxygen stable isotope data indicate that the minimum average calcite precipitation temperature was 40° C. Preliminary calculations show that steadystate diffusion of Ca+ + from the dissolution of nannoplankton skeletal material in the interbedded pelagic marls to the associated sandstones is a feasible transport mechanism. A thick sandstone unit from 1234-1263 m sub-bottom is extensively replaced by calcite near the upper and lower contacts. Farther into the sand body away from the contacts, the sandstone has good secondary porosity resulting from the dissolution of ferroan calcite that partially replaced matrix and framework grains. The central portion of the thick sand appears to be a channel with high-energy clean sand. We believe that the channel provided a conduit for focused flow of diagenetic compactional fluids responsible for dissolution. Focused flow may be the result of the earlier lithification of the pelagic limestones and thin-bedded sandstones which, then formed vertical permeability barriers. Calcite dissolution has occurred and may still be occurring at temperatures less than 65°C.