109 resultados para aquatic humic substances
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.
Resumo:
The principal gaseous carbon-containing components identified in the first 400 m of sediment at Deep Sea Drilling Project Site 533, Leg 76, are methane (CH4) and carbon dioxide (CO2). Below a sub-bottom depth of about 25 m, sediment cores commonly contained pockets caused by the expansion of gas upon core recovery. The carbon isotopic composition (d13C per mil relative to PDB standard) of CH4 and CO2 in these gas pockets has been measured, resulting in the following observations: (1) d13C-CH4 values increase with depth from approximately -94 per mil in the uppermost sediment to about -66 per mil in the deepest sediment, reflecting a systematic but nonlinear depletion of 12C with depth. (2) d13C-CO2 values also increase with depth of sediment from about -25 per mil to about -4 per mil, snowing a depletion of 12C that closely parallels the trend of the isotopic composition of CH4. The magnitude and parallel distribution of d13C values for both CH4 and CO2 are consistent with the concept that the formation of the CH4 resulted from the microbiological reduction of CO2 from organic substances. These results imply that CH4 and CO2 incorporated in gas hydrates at this site are biogenic.
Resumo:
The study of particulate organic matter (OM) in Arctic Ocean sediments from the Late Cretaceous to the Eocene (IODP Expedition 302) has revealed detailed information about the aquatic/marine OM fluxes, biological sources, preservation and export of terrestrial material. Here, we present detailed data from maceral analysis, vitrinite reflectance measurements and organic geochemistry. During the Campanian/Paleocene, fluxes of land-derived OM are indicated by reworked and oxidized macerals (vitrinite, inertinite) and terrigenous liptinite (cutinite, sporinite). In the Early Eocene, drastic environmental changes are indicated by peaks in aquatic OM (up to 40-45%, lamalginite, telalginite, liptodetrinite, dinoflagellate cysts) and amorphous OM (up to 50% bituminite). These events of increased aquatic OM flux, similar to conditions favoring black shale deposition, correlate with the global d13C events "Paleocene/Eocene Thermal Maximum" (PETM) and "Elmo-event". Freshwater discharge and proximity of the source area are documented by freshwater algae material (Pediastrum, Botryococcus) and immature land-plant material (corphuminite, textinite). We consider that erosion of coal-bearing sediments during transgression time lead to humic acids release as a source for bituminite deposited in the Early Eocene black shales.