142 resultados para Surface characteristics
Resumo:
Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.
Resumo:
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km**2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub-páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007-November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C-horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow.
Resumo:
Orientation and geometry of pores as well as sediment compressibility can be approximated by determining the shrinkage behavior of standardized samples. The sections investigated show that these measurements are influenced by changing sediment composition. This is also well documented by the relationship between void ratio and overburden pressure. Median pore-diameter calculations clearly reflect both sediment composition and compaction.
Resumo:
The shapes and surface textures of sand-sized quartz grains from the sediments cored at Site 645 in southern Baffin Bay during ODP Leg 105 were studied to characterize the terrigenous materials and the settling processes involved in the deposition of these sediments. Here, we show a homogeneous sand fraction that results from mixing grains from various provenances. The characteristics inherited from terrestrial processes (varying degrees of wear; fluviatile, aeolian, and diagenetic features) dominate the characteristics that result from evolution in a high-energy marine environment. Thus, the influence of the last stage of sedimentation in a deep-marine environment was difficult to distinguish. However, fluctuations in the relative proportions of particular features reveal that the terrigenous material derived from sedimentary formations of Baffin Island and East Greenland or from direct abrasion of the crystalline shield, which changed through time as the dominant settling processes evolved. In particular, this study confirms the onset of major ice rafting as old as late Miocene.
Resumo:
Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.
Resumo:
The German-Russian project CARBOPERM - Carbon in Permafrost, origin, quality, quantity, and degradation and microbial turnover - is devoted to studying soil organic matter history, degradation and turnover in coastal lowlands of Northern Siberia. The multidisciplinary project combines research from various German and Russian institutions and runs from 2013 to 2016. The project aims assessing the recent and the ancient trace gas budget over tundra soils in northern Siberia. Studied field sites are placed in the permafrost of the Lena Delta and on Bol'shoy Lyakhovsky, the southernmost island of the New Siberian Archipelago in the eastern Laptev Sea. Field campaigns to Bol'shoy Lyakhovsky in 2014 (chapter 2) were motivated by research on palaeoenvironmental and palaeoclimate reconstruction, sediment dating, near surface geophysics and microbiological research. In particular the field campaigns focussed on: - coring Quaternary strata with a ages back to ~200.000 years ago as found along the southern coast; they allow tracing microbial communities and organic tracers (i.e. lipids and biomarkers, sedimentary DNA) in the deposits across two climatic cycles (chapter 3), - instrumenting a borehole with a thermistor chain for measuring permafrost temperatures (chapter 3), - sampling Quaternary strata for dating permafrost formation periods based on the optical stimulated luminescence (OSL) technique (chapter 4), - sampling soil and geologic formations for carbon content in order to highlight potential release of CO2 and methane based on incubation experiments (chapter 5), - profiling near surface permafrost using ground-penetrating radar and geoelectrics for defining the spatial depositional context, where the cores are located (chapters 6 + 7).
Resumo:
Termites are the most important soil ecosystem engineers of semi-arid and arid habitats. They enhance decomposition processes as well as the subsequent mineralisation of nutrients by bacteria and fungi. Through their construction of galleries, nests and mounds, they promote soil turnover and influence the distribution of nutrients and also alter texture and hydrological properties of soils, thereby affecting the heterogeneity of their ecosystem. The main aim of the present thesis was to define the impact of termites on ecosys-tem functioning in a semi-arid ecosystem. In a baseline study, I assessed the diversity of termite taxa in relation to the amount of precipitation, the vegetation patterns and the land use systems at several sites in Namibia. Subsequently, I focussed on a species that is highly abundant in many African savannas, the fungus growing and mound building species Macro-termes michaelseni (Sjöstedt, 1914). I asked how this species influences the spatial hetero-geneity of soil and vegetation patterns. From repeated samplings at 13 sites in Namibia, I obtained 17 termite taxa of 15 genera. While the type of land use seems to have a minor effect on the termite fauna, the mean annual precipitation explained 96% and the Simpson index of vascular plant diversity 81% of the variation in taxa diversity. The number of termite taxa increased with both of these explanation variables. In contrast to former studies on Macrotermes mounds in several regions of Africa that I reviewed, soil analyses from M. michaelseni mounds in the central Namibian savanna revealed that they contain much higher nitrogen contents when compared to their parent material. Further analyses revealed that nitrate forms a major component of the nitrogen content in termite mounds. As nitrate solves easily in water, evaporation processes are most probably responsible for the transport of solved nitrates to the mound surface and their accumulation there. The analysed mounds in central Namibia contained higher sand propor-tions compared to the mounds of the former studies. Through the higher percentage of coarse and middle sized pores, water moves more easily in sandy soils compared to more clayey soils. In consequence, evaporation-driven nitrate accumulation can occur in the studied mounds at high rates. ff...
Resumo:
There is a paucity of information on abundance, densities, and habitat selection of narwhals Monodon monoceros in the offshore pack ice of Baffin Bay, West Greenland, despite the critical importance of winter foraging regions and considerable sea ice declines in the past decades. We conducted a double-platform visual aerial survey over a narwhal wintering ground to obtain pack ice densities and develop the first fully corrected abundance estimate using point conditional mark-recapture distance sampling. Continuous video recording and digital images taken along the trackline allowed for in situ quantification of winter narwhal habitat and for the estimation of fine-scale narwhal habitat selection and habitat-specific sighting probabilities. Abundance at the surface was estimated at 3484 (coefficient of variation [CV] = 0.46) including whales missed by observers. The fully corrected abundance of narwhals was 18 044 (CV = 0.46), or approximately one-quarter of the entire Baffin Bay population. The narwhal wintering ground surveyed (~9500 km**2) had 2.4 to 3.2% open water based on estimates from satellite imagery (NASA Moderate Resolution Imaging Spectroradiometer) and 1565 digital photographic images collected on the trackline. Thus, the ~18 000 narwhals had access to 233 km**2 of open water, resulting in an average density of ~77 narwhals/km**2 open water. Narwhal sighting probability near habitats with <10% or 10 to 50% open water was significantly higher than sighting probability in habitats with >50% open water, suggesting narwhals select optimal foraging areas in dense pack ice regardless of open water availability. This study provides the first quantitative ecological data on densities and habitat selection of narwhals in pack ice foraging regions that are rapidly being altered with climate change.