107 resultados para Subtropical Tidal River System
Resumo:
In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of d15N-[NH4]+ and d15N-[NO2]- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and d15N SPM, as well as nitrate concentration, d15N-NO3 - and d18O-[NO3] -, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol/l, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. d15N-[NH4]+ values increased up to 12 per mil, and d15N-[NO2]- ranged from -8.0 to -14.2 per mil. Based on this, we calculated an apparent isotope effect 15-epsilon of -10.0 ± 0.1 per mil during net nitrite consumption, as well as an isotope effect 15-epsilon of -4.0 ± 0.1 per mil and 18-epsilon of -5.3 ± 0.1 per mil during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.
Resumo:
In order to test the sensitivity of marine primary productivity in the midlatitude open ocean North Atlantic to changes in the Atlantic Meridional Overturning Circulation (AMOC), we investigated two spliced sediment cores from a site south of the Azores Islands at the northern rim of the North Atlantic subtropical gyre. For this purpose we analyzed coccolithophore assemblages, diatom abundances, alkenones and conducted X-ray fluorescence (XRF) core scanning. During times of reduced AMOC, especially during Heinrich event 1 (H1) and the Younger Dryas, we observe a strong increase in productivity as evidenced by high coccolith accumulation rates, high alkenone concentrations/accumulation rates, high Ba/Ti-ratios, high abundances of diatoms and low abundances ofF. profunda. The increased productivity is partly caused by a more southern position of the Azores Front (AzF), and hence by a less northward extension of the subtropical gyre, as deduced from high abundances of the temperate coccolithophore species G. muellerae and low abundances of subtropical species (Oolithotus spp., Umbellosphaera spp., Umbilicosphaeraspp.). However, to explain the full range of the observed productivity increase, other factors like increased westerly winds and advection of nutrient-rich surface waters have also to be considered. Because this pattern can also be observed in other sediment cores from the midlatitude North Atlantic, we propose that during times of reduced AMOC there has been a band of strongly increased productivity across the North Atlantic at the northern rim of the contracted subtropical gyre, which partly counteracts the decreased organic carbon pump in the high northern latitudes.