323 resultados para Spectrophotometry, Atomic Absorption
Resumo:
In this paper, we present new detailed data on the trace metal content of more than 200 shallow polar snow samples collected at various depths in numerous locations mainly in Antarctica and Greenland. The samples were collected in ultraclean plexiglass or teflon tubes from the walls of hand dug pits, using stringent contamination free techniques controlled by severe blank tests. They were then analysed for Na, Mg, K, Ca, Fe, Al, Mn, Pb, Cd, Cu, Zn and Ag in clean room conditions by flameless atomic absorption, after a preconcentration step (by non boiling evaporation in teflon bulbs) which includes dissolving any solid particles by concentrated nitric and hydrofluoric acids. The overall precision on the measured concentrations is of the order of 10 % for all the metals except Pb (20 %) and Cd (35 %), using 95 % confidence limits. The data obtained are compared with those published previously in the literature. Part of these previous data are shown to be erroneously too high, probably because of con-tamination problems both during field collection and analysis.
Resumo:
Western Wright Valley, from Wright Upper Glacier to the western end of the Dais, can be divided into three broad geomorphic regions: the elevated Labyrinth, the narrow Dais which is connected to the Labyrinth, and the North and South forks which are bifurcated by the Dais. Soil associations of Typic Haplorthels/Haploturbels with ice-cemented permafrost at < 70 cm are most common in each of these geomorphic regions. Amongst the Haplo Great Groups are patches of Salic and Typic Anhyorthels with ice-cemented permafrost at > 70 cm. They are developed in situ in strongly weathered drift with very low surface boulder frequency and occur on the upper erosion surface of the Labyrinth and on the Dais. Typic Anhyorthels also occur at lower elevation on sinuous and patchy Wright Upper III drift within the forks. Salic Aquorthels exist only in the South Fork marginal to Don Juan Pond, whereas Salic Haplorthels occur in low areas of both South and North forks where any water table is > 50 cm. Most soils within the study area have an alkaline pH dominated by Na+ and Cl- ions. The low salt accumulation within Haplorthels/Haploturbels may be due to limited depth of soil development and possibly leaching.
Resumo:
In order to examine whether the paleoceanographic nutrient proxies, d13C and cadmium/calcium in foraminiferal calcite, are well coupled to nutrients in the region of North Atlantic Deep Water formation, we present da ta from two transects of the Greenland-Iceland-Norwegian Seas. Along Transect A (74.3°N, 18.3°E to 75.0°N, 12.5°W, 15 stations), we measured phosphate and Cd concentrations of modern surface sea water. Along Transect B (64.5°N, 0.7°W to 70.4°N, 18.2°W, 14 stations) we measured Cd/Ca ratios and d13C of the planktonic foraminifera Neogloboquadrina pachyderma sinistral in core top sediments. Our results indicate that Cd and phosphate both vary with surface water mass and are well correlated along Transect A. Our planktonic foraminiferal d13C data indicate similar nutrient variation with water mass along Transect B. Our Cd/Ca data hint at the same type of nutrient variability, but interpretations are hampered by low values close to the detection limit of this technique and therefore relatively large error bars. We also measured Cd and phosphate concentrations in water depth profiles at three sites along Transect A and the d13C of the benthic foraminifera Cibicidoides wuellerstorfi along Transect B. Modern sea water depth profiles along Transect A have nutrient depletions at the surface and then constant values at depths greater than 100 meters. The d13C of planktonic and benthic foraminifera from Transect B plotted versus depth also reflect surface nutrient depletion and deep nutrient enrichment as seen at Transect A, with a small difference between intermediate and deep waters. Overall we see no evidence for decoupling of Cd/Ca ratio and d13C in foraminiferal calcite from water column nutrient concentrations along these transects in a region of North Atlantic Deep Water formation.