129 resultados para Solon, ca. 630 B.C.-ca. 560 B.C.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ~50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ~75 m, 75-100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0-134.8 µmol mol-1 for the Fe/Ca and 1.68(±0.41) µmol mol-1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1sigma[Mn/Ca] = 0.35-2.07 µmol mol-1; 1sigma[Fe/Ca] = 93.9-188.4 µmol mol-1). The Mn/Ca ratios in the calcite were generally relatively low (2.21-9.93 µmol mol-1) but in the same magnitude and proportional to the surrounding pore waters (1.37-6.67 µmol mol-1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0-101.0 µmol mol-1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.