113 resultados para Silica surface
Resumo:
The surface layer of bottom sediments on the Barents Sea shelf has an irregular but generally very low abundance of diatoms. Tests of species belonging to present-day diatom flora were absent in nearly half of samples; their abundance was only a few shells per gram of dry sediment in 30% of the samples, it was up to 100 shells per gram in 9% of the samples, and was in thousands of shells per gram in only 13% of the samples. The lowest abundances of diatom shells were found in sediments of the eastern and northeastern parts of the sea owing to unfavorable sedimentation conditions and deficiency of dissolved silica in water. But distribution of diatom species on the surface of bottom sediments is strictly consistent with their present-day ranges. About 30% of the samples contained re-deposited Cretaceous and Paleogene diatoms indicating that bottom sediments have largely formed by scouring and re-deposition of underlying material.
Resumo:
Polonium-210 and Lead-210 have been measured in the water column and on suspended particulate matter during the POLARSTERN cruise ARK-XXII/2. The data have been submitted to Pangaea following a Polonium-Lead intercalibration exercise organized by GEOTRACES, where the AWI lab results range within the data standard deviation from 10 participating labs. Polonium-210 and Lead-210 in the ocean can be used to identify the sources and sinks of suspended matter. In seawater, Polonium-210 (210Po) and Lead-210 (210Pb) are produced by stepwise radioactive decay of Uranium-238. 210Po (138 days half life) and 210Pb (22.3 years half life) have high affinities for suspended particles. Those radionuclides are present in dissolved form and adsorbed onto particles. Following adsorption onto particle surfaces, 210Po especially is transported into the interior of cells where it bonds to proteins. In this way, 210Po also accumulates in the food chain. 210Po is therefore considered to be a good tracer for POC, and traces particle export over a timescale of month. 210Pb (22.3 years half life) adsorbs preferably onto structural components of cells, biogenic silica and lithogenic particles, and is therefore a better tracer more rapidly sinking matter. Our goal during ARK XXII/2 was to trace pathways of particulate and dissolved matter leaving the Siberian Shelf. The pathways of particulate and dissolved matter will be followed by the combined use of 210Po and 234Th as a tracer pair (and perhaps 210Pb) for particle flux (Cai, P.; Rutgers van der Loeff, MM (2008) doi:10.1594/PANGAEA.708354). This information gathered from the water column will be complemented with the results of the 210Po-210Pb study in sea ice (Camara-Mor, P, Instituto de Ciencias del Mar-SCIC, Barcelona, Spain) to provide a more thorough picture of particle transport from the shelf to the open sea and from surface to depth.
Resumo:
The book is devoted to results of studies of Pacific sediment composition, regularities of their distribution and processes of sedimentation in the Pacific Ocean. Materials obtained by Soviet expeditions are the main part of the book.
Resumo:
We have analyzed the major, trace, and rare earth element composition of surface sediments collected from a transect across the Equator at 135°W longitude in the Pacific Ocean. Comparing the behavior of this suite of elements to the CaCO3, opal, and Corg fluxes (which record sharp maxima at the Equator, previously documented at the same sampling stations) enables us to assess the relative significance of the various pathways by which trace elements are transported to the equatorial Pacific seafloor. The 1. (1) high biogenic source at the Equator, associated with equatorial divergence of surface water and upwelling of nutrient-rich water, and 2. (2) high aluminosilicate flux at 4°N, associated with increased terrigenous input from elevated rainfall at the Intertropical Convergence Zone (ITCZ) of the tradewinds, are the two most important fluxes with which elemental transport is affiliated. The biogenic flux at the Equator transports Ca and Sr structurally bound to carbonate tests and Mn primarily as an adsorbed component. Trace elements such as Cr, As, Pb, and the REEs are also influenced by the biogenic flux at the Equator, although this affiliation is not regionally dominant. Normative calculations suggest that extremely large fluxes of Ba and P at the Equator are carried by only small proportions of barite and apatite phases. The high terrigenous flux at the ITCZ has a profound effect on chemical transport to the seafloor, with elemental fluxes increasing tremendously and in parallel with Ti. Normative calculations, however, indicate that these fluxes are far in excess of what can be supplied by lattice-bound terrigenous phases. The accumulation of Ba is greater than is affiliated with biogenic transport at the Equator, while the P flux at the ITCZ is only 10% less than at the Equator. This challenges the common view that Ba and P are essentially exclusively associated with biogenic fluxes. Many other elements (including Mn, Pb, As, and REEs) also record greater accumulation beneath the ITCZ than at the Equator. Thus, adsorptive scavenging by terrigenous paniculate matter, or phases intimately associated with them, appears to be an extremely important process regulating elemental transport to the equatorial Pacific seafloor. These findings emphasize the role of vertical transport to the sediment, and provide additional constraints on the paleochemical use of trace elements to track biogenic and terrigenous fluxes.
Resumo:
In this study we demonstrate the relevance of lateral particle transport in nepheloid layers for organic carbon (OC) accumulation and burial across high-productive continental margins. We present geochemical data from surface sediments and suspended particles in the bottom nepheloid layer (BNL) from the most productive coastal upwelling area of the modern ocean, the Benguela upwelling system offshore southwest Africa. Interpretation of depositional patterns and comparison of downslope trends in OC content, organic matter composition, and 14C age between suspended particles and surface sediments indicate that lateral particle transport is the primary mechanism controlling supply and burial of OC. We propose that effective seaward particle transport primarily along the BNL is a key process that promotes and maintains local high sedimentation rates, ultimately causing high preservation of OC in a depocenter on the upper slope offshore Namibia. As lateral transport efficiently displaces areas of enhanced OC burial from maximum production at highly productive continental margins, vertical particle flux models do not sufficiently explain the relationship between primary production and shallow-marine OC burial. On geologic time scales, the widest distribution and strongest intensity of lateral particle transport is expected during periods of rapid sea-level change. At times in the geologic past, widespread downslope lateral transport of OC thus may have been a primary driver of enhanced OC burial at deeper continental slopes and abyssal basins.
Resumo:
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Prominent and well studied is the summer monsoon, but much less is known about late Holocene changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and d15N) in a well-laminated sediment core from the Pakistan continental margin. Weak winter monsoon intensities off Pakistan are indicated from 400 B.C. to 250 A.D. by reduced productivity and relatively high SST. At about 250 A.D., the intensity of the winter monsoon increased off Pakistan as indicated by a trend to lower SST. We infer that monsoon conditions were relatively unstable from ~500 to 1300 A.D., because primary production and SST were highly variable. Declining SST and elevated biological production from 1400 to 1900 A.D. suggest invigorated convective winter mixing by strengthening winter monsoon circulation, most likely a regional expression of colder climate conditions during the Little Ice Age on the Northern Hemisphere. The comparison of winter monsoon intensity with records of summer monsoon intensity suggests that an inverse relationship between summer and winter monsoon strength exists in the Asian monsoon system during the late Holocene, effected by shifts in the Intertropical Convergence Zone.
Resumo:
Based on 66 surface sediment samples collected in the SW Atlantic Ocean between 27 and 50°S, this study presents an overview of the spatial distribution of biogenic opal and diatom concentrations, and diatom assemblages. Biogenic opal has highest values in the deepest, pelagic stations and decreases toward the slope. Diatoms closely follow the spatial trend of opal. Diatom assemblages reflect the present-day dominant hydrographical features. Antarctic diatoms are the main contributors to the preserved diatom community in core top sediments, with coastal planktonic and tropical/subtropical diatoms as secondary components. Dominance of Antarctic diatoms between 35 and 50°S in the pelagic realm mirrors the northward displacement of Antarctic-source water masses, characterized by high nutrient content and low salinity. Northward of ca. 35°S, the highest contribution of tropical/subtropical, pelagic diatoms, typical for nutrient-poor and high salinity waters, matches the main southward path of the Brazil Current. Mixing of Antarctic and tropical waters down up to 45°S is clearly illustrated by the diatom assemblage. Concentrations of biogenic opal and diatoms rather reflect the path of predominant water masses, but are less correlated with surface water productivity in the SW Atlantic.