370 resultados para Shallow water
Resumo:
Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.
Resumo:
Abundance of noble metals and bulk chemical composition have been studied in bottom sediments of the Chukchi Sea. Distribution of noble metals and their correlation with major and trace elements in the sediments have been analyzed using multicomponent statistics. It was established that average contents of noble metals in the bottom sediments of the Chukchi Sea significantly exceed those both in shelf terrigenous sediments and stratisphere. Osmium and iridium enrich mixed and pelitic sediments relative to shallow-water sediments and their influx is presumably determined by erosion of coastal and bottom unconsolidated deposits. High Ag, Ru, Au, and Pt contents were identified in clayey sediments enriched in biogenic elements in the some areas of the Southern Chukchi plain (Chukchi Sea) confined to intersection zones of submeridional and sublatitudinal structures of the graben-rift system, which formed in Mesozoic and activated in Late Cenozoic.
Resumo:
Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
Resumo:
Calcareous nannofossil range charts for Leg 174A sites on the New Jersey continental margin are presented in this report, and nannofossil biostratigraphy is established. Nannofossil biostratigraphic resolution is low in shallow-water Sites 1071 and 1072, where nannofossils are generally rare or frequently absent. Site 1073 yields generally common to abundant nannofossils, which allows a fairly detailed nannofossil biostratigraphy for the entire Pleistocene through upper Eocene sequence. Quantitative and semiquantitative nannofossil data for the upper Pleistocene section from Site 1073 reveal an average sedimentation rate of about 80 cm/k.y. The unusually high sedimentation rate makes this calcareous section very valuable for high-resolution studies.
Resumo:
Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.
Resumo:
We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance.
Resumo:
The late Miocene sediments of the Tyrrhenian ODP Site 654 encompass a deepening sequence which begins with glauconite shallow water sands followed by a rapid transition to deep water sediments and culminates with dolomitic mudstones associated with Messinian evaporites. The sequence compares well with the so-called 'Sahelian cycle' and with post-orogenic cycles recognized in peninsular Italy and Sicily. The studied interval, consisting of 55 m thick nannofossil oozes, belongs to the Globorotalia suterae subzone and lower part of the Globorotalia conomiozea Zone, indicating late Tortonian and early Messinian age, respectively. Biomagnetostratigraphic correlation assigns the Tortonian/ Messinian boundary an age of 6.44-6.45 Ma. In addition, six main events have been recognized, based on the range of keeled globorotaliids and coiling direction changes of keeled and unkeeled globorotaliids, which have been correlated to the geomagnetic time-scale. Comparison with North Atlantic sites and land sections of the Guadalquivir basin and northern Morocco provides good correlations with the events documented in these areas. In particular, Event IV, which predates the FO of Globorotalia conomiozea, may be used to recognize the Tortonian/Messinian boundary in extra-Mediterranean areas where G. conomiozea is missing. Variations in the distribution of different species of Globigerinoides are related to changes in the surficial marine environment. Although no clear trends can be recognized on the oxygen and carbon isotope records of Globigerinoides obliquus, the parallelism between the occurrence of low salinity species (G. sacculifer) and peaks of low 5180 values, as well as that of normal salinity species (G. obliquus) and peaks of high d18O values, suggests strong local changes of environmental conditions. The high amplitude of the fluctuations of d18O values suggests important variations in the salinity of the Tyrrhenian Sea, related to a rapidly changing water budget. The major feature of the carbon isotope record is a large decrease between 7.0 and 6.95 Ma, which therefore predates the 6.2 Ma global 'carbon shift'.
Resumo:
87Sr/86Sr data of belemnites are presented from a Middle Jurassic-Early Cretaceous succession from the Falkland Plateau (Deep Sea Drilling Project Sites 511 and 330) that was deposited in a periodically anoxic, semi-enclosed shallow water basin. Diagenetically screened strontium-isotope values of 0.706789 rise to 0.707044 before increasing sharply to 0.707428 in the uppermost part of the sampled succession. Comparison with published strontium calibration curves suggests that the oldest samples were Callovian to Oxfordian in age, whilst the remainder of the Jurassic part of the succession consisted of Kimmeridgian and Early Tithonian age sediments. The nannofossil, dinoflagellate and molluscan assemblages provide comparable age determinations. The strontium-isotope analysis of the youngest belemnites points to a Hauterivian-Barremian age, whilst age interpretations based upon the fauna provide a wide age range from the Barremian to early Albian. Strontium-isotope stratigraphy of this succession hence offers increased age resolution providing data regarding the timing of episodes of bottom water anoxia which have been recorded throughout the South Atlantic Basin. Well-preserved belemnite specimens display an oxygen-isotope range between +0.08 and -2.22? (PDB, Peedee belemnite international standard) and a carbon-isotope range from +2.35 to -1.33? (PDB). Delta13C values become increasingly negative through the Late Jurassic-Early Cretaceous and in concert with the 87Sr/86Sr data reveal a trend that could be accounted for by increasing levels of weathering and erosion. The oxygen-isotope data if interpreted in terms of palaeotemperature are consistent with warm palaeotemperatures in the Kimmeridgian and slightly cooler temperatures for the Tithonian and Early Cretaceous parts of the succession. The proposed relative Kimmeridgian warmth (based upon strontium-isotope age assignments) is thus in good agreement with other published palaeotemperature records.
Resumo:
According to geochemical analyses carbonaceous sediments from deep basins of the Baltic Sea containing 3-5% of organic carbon are enriched in some metals such as Cu, Mo, Ni, Pb, Zn, V, and U relative to shallow-water facies of the Bay of Finland. These metals also enrich (relative to background values in clayey rocks) ancient carbonaceous shales, where the average Cu and V contents are slightly higher and that of Mo, Pb, and Zn lower than in deep-sea carbonaceous sediments of the Baltic Sea. In addition, the deep-sea carbonaceous sediments of the Baltic Sea are enriched (but less notably than ancient shales) in Ag, As, Bi, and Cd. These data confirm previous assumptions that carbonaceous sediments accumulating now in seas and oceans can be considered as recent analogs of ancient metalliferous shales.
Resumo:
Site 534 reflects a complex interplay of global, basinal, and local influences on sedimentation during the Callovian and Late Jurassic. Rifting and rapid subsidence of the continental margins of the North Atlantic-Tethys seaway occurred during the late Early Jurassic (Sinemurian-Pliensbachian), but rapid spreading between the North American margin (Blake Spur Ridge and magnetic lineation) and the northwest African margin did not commence until the Bathonian or earliest Callovian. Site 534, drilled on marine magnetic anomaly "M-28" of Bryan et al. (1980), was initially about 150 km from either continental margin. The ?middle Callovian basal sediments are dusky red silty marl. Callovian transgression led to active carbonate platforms on the margin, recorded at Site 534 as a rise in the CCD (carbonate compensation depth), then arrival of lime-rich turbidites from the Blake Plateau platform across the Blake Spur Ridge. The host pelagic sediment is greenish black, organic-rich, radiolarian-rich, silty claystone. Hydrothermal activity on the nearby spreading ridge enriched this lower unit in metals. In the Oxfordian, the input of terrestrial silt rapidly diminished; radiolarians or other bioclasts were not preserved. The dark variegated claystone has fine-grained marl and reddish claystone turbidite beds. The late Callovian-Oxfordian Western Tethys has radiolarian chert deposition, marine hiatuses, or organic-rich sediments. The Kimmeridgian and Tithonian had a stable or receding sea level. Near the end of the Jurassic many of the carbonate platforms of the margins were buried beneath prograding fan or alluvial deposits. Carbonate deposition shifted to the deep sea. Site 534 records the deepening of the CCD and ACD (aragonite compensation depth) during the Kimmeridgian and early Tithonian, then a rise of the ACD in the middle Tithonian. Similar trends occurred throughout the Western Tethys-Atlantic. High nannofossil productivity of the seaway led to deposition of very widespread white micritic limestone in the late Tithonian-Berriasian. The underlying sediment had a slower deposition rate of carbonate, therefore its higher clay and associated Fe content produced a red marl. A short sea-level incursion occurred on the Atlantic margins during the Kimmeridgian and is reflected in the Site 534 greenish gray marl unit by numerous turbidite beds of shallow-water carbonates.
Resumo:
The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act as hydraulic roughness elements in dependence with flow direction. The presence of a flow separation zone on the bedform lee was estimated through analysis of the measured velocity directions and the calculation of the flow separation line. The Law of the Wall was used to calculate roughness lengths and shear velocities from log-linear segments sought on transect-averaged and single-location velocity profiles. During the ebb tide a permanent flow separation zone was established over the steep (10-20°) lee sides of the ebb-oriented primary bedforms, which generated a consequent drag on the flow. During the flood, no flow separation was induced by the gentle (2°) lee side of the primary bedforms except over the steepest (10°) part of the lee side where a small separation zone was sometimes observed. As a result, hydraulic roughness was only due to the superimposed bedforms. The parameterized flow separation line was found to underestimate the length of the flow separation zone of the primary bedforms. A better estimation of the presence and shape of the flow separation zone over complex bedforms in a tidal environment still needs to be determined; in particular the relationship between flow separation zone and bedform geometry (asymmetry, relative height or slope of the lee side) is unclear. This would improve the prediction of complex bedform roughness in tidal flows.
Resumo:
Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.
Resumo:
Barremian through uppermost Aptian strata from ODP Hole 641C, located upslope of a tilted fault block on the Galicia margin (northwest Spain), are syn-rift sediments deposited in the bathyal realm and are characterized by rapid sedimentation from turbidity currents and debris flows. Calcarenite and calcirudite turbidites contain shallow-water carbonate, terrigenous, and pelagic debris, in complete or partial Bouma sequences. These deposits contain abraded micritized bioclasts of reefal debris, including rudist fragments. The youngest turbidite containing shallow-water carbonate debris at Site 641 defines the boundary between syn-rift and post-rift sediments; this is also the boundary between Aptian and Albian sediments. Some Aptian turbidites are partially silicified, with pore-filling chalcedony and megaquartz. Adjacent layers of length-fast and -slow chalcedony are succeeded by megaquartz as the final pore-filling stage within carbonate reef debris. Temperatures of formation, calculated from the oxygen isotopic composition of the authigenic quartz, are relatively low for formation of quartz but are relatively warm for shallow burial depths. This quartz cement may be interpreted as a rift-associated precipitate from seawater-derived epithermal fluids that migrated along a fault associated with the tilted block and were injected into the porous turbidite beds. These warm fluids may have cooled rapidly and precipitated silica at the boundaries of the turbidite beds as a result of contact with cooler pore waters. The color pattern in the quartz cement, observed by cathodoluminescence and fluorescence techniques, and changes in the trace lement geochemistry mimic the textural change of the different quartz layers and indicates growth synchronism of the different quartz phases. Fluorescence petrography of neomorphosed low-Mg-calcite bioclasts in the silicified turbidites shows extensive zonation and details of replacive crystal growth in the bioclasts that are not observed by cathodoluminescence. Fluorescence microscopy also reveals a competitive growth history during neomorphism of the adjacent crystals in an altered carbonate bioclast. Barremian-Aptian background pelagic sediments from Hole 641C have characteristics similar to pelagic sediments from the Blake-Bahama Formation described by Jansa et al. (1979) from the western North Atlantic. Sediments at this site differ from the Blake-Bahama Formation type locality in that the Barremian-Aptian pelagic sediments have a higher percentage of dark calcareous claystone and some turbidites are silicified at Site 641. The stable isotopic composition of the pelagic marlstones from Site 641 is similar to those of other Berriasian-Aptian pelagic sediments from the Atlantic.