299 resultados para STANDARD GIBBS ENERGIES OF TRANSFER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global change leads to a multitude of simultaneous modifications in the marine realm among which shoaling of the upper mixed layer, leading to enhanced surface layer light intensities, as well as increased carbon dioxide (CO2) concentration are some of the most critical environmental alterations for phytoplankton. In this study, we investigated the responses of growth, photosynthetic carbon fixation and calcification of the coccolithophore Gephyrocapsa oceanica to elevated inline image (51 Pa, 105 Pa, and 152 Pa) (1 Pa ~ 10 µatm) at a variety of light intensities (50-800 µmol photons/m**2/s). By fitting the light response curve, our results showed that rising inline image reduced the maximum rates for growth, photosynthetic carbon fixation and calcification. Increasing light intensity enhanced the sensitivity of these rate responses to inline image, and shifted the inline image optima toward lower levels. Combining the results of this and a previous study (Sett et al. 2014) on the same strain indicates that both limiting low inline image and inhibiting high inline image levels (this study) induce similar responses, reducing growth, carbon fixation and calcification rates of G. oceanica. At limiting low light intensities the inline image optima for maximum growth, carbon fixation and calcification are shifted toward higher levels. Interacting effects of simultaneously occurring environmental changes, such as increasing light intensity and ocean acidification, need to be considered when trying to assess metabolic rates of marine phytoplankton under future ocean scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their high abundance and their high importance for the oceanic matter flux, heterotrophic nanoflagellates are only poorly studied in the deep-sea regions. Studies on the choanoflagellate distribution during two deep-sea expeditions, to the South Atlantic (5038 m) and Antarctica (Weddell Sea, 2551 m), revealed the deepest records of choanoflagellates so far. A new species, (Lagenoeca antarctica) with a conspicuous spike structure on the theca is described from deep Antarctic waters. Lagenoeca antarctica sp. n. is a solitary unstalked free living salpingoecid-like choanoflagellate. The protoplast is surrounded by a typical theca with unique spikes only visible in SEM micrographs. The ovoid cell nearly fills the whole theca and ranges in size from 4 to 6 µm. The collar measures 2-3 µm and the flagellum 3-5 µm. A second species, Salpingoeca abyssalis sp. n., was isolated from the abyssal plain of the South Atlantic (5038 m depth). Floating and attached forms were observed. The protoplast ranges from to 2 to 4 µm in length and 1 to 2 µm in width. The collar is about the same length as the protoplast and the flagellum has 2 to 2.5 × the length of the protoplast. Phylogenetic analyses based on a fragment of SSU rDNA revealed Salpingoeca abyssalis to cluster together with a marine isolate of Salpingoeca infusionum while Lagenoeca antarctica clusters separately from the other codonosigid and salpingoecid taxa. Salpingoeca abyssalis and an undetermined Monosiga species seems to be the first choanoflagellate species recorded from the abyssal plain.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.

Relevância:

100.00% 100.00%

Publicador: