755 resultados para Rates of maturation
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/18-9
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/15-1
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/16-1
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/6-11
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/29-7
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/26-3
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/13-7
Resumo:
Little is known about the fluxes to and from the ocean during the Cenozoic of phosphorus (P), a limiting nutrient for oceanic primary productivity and organic carbon burial on geologic timescales. Previous studies have concluded that dissolved river fluxes increased worldwide during the Cenozoic and that organic carbon burial decreased relative to calcium carbonate burial and perhaps in absolute terms as well. To examine the apparent contradiction between increased river fluxes of P (assuming P fluxes behave like the others) expected to drive increased organic carbon burial and observations indicating decreased organic carbon burial, we determined P accumulation rates for equatorial Pacific sediments from Ocean Drilling Program leg 138 sites in the eastern equatorial Pacific and leg 130 sites on the Ontong Java Plateau in the western equatorial Pacific. Although there are site specific and depth dependent effects on P accumulation rates, there are important features common to the records at all sites. P accumulation rates declined from 50 to 20 Ma, showed some variability from 20 to 10 Ma, and had a substantial peak from 9 to 3 Ma centered at 5-6 Ma. These changes in P accumulation rates for the equatorial Pacific are equivalent to substantial changes in the P mass balance. However, the pattern resembles neither that of weathering flux indicators (87Sr/86Sr and Ge/Si ratios) nor that of the carbon isotope record reflecting changes in organic carbon burial rates. Although these P accumulation rate patterns need confirmation from other regions with sediment burial significant in global mass balances (e.g., the North Pacific and Southern Ocean), it appears that P weathering inputs to the ocean are decoupled from those of other elements and that further exploration is needed of the relationship between P burial and net organic carbon burial.
Resumo:
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean (Martin et al., 1990, doi:10.1038/345156a0; Martin, 1990, doi:10.1029/PA005i001p00001). Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles (Watson et al., 2000, doi:10.1038/35037561; Kohfeld et al., 2005, doi:10.1126/science.1105375; Martínez-Garcia et al., 2009, doi:10.1029/2008PA001657; Sigman et al., 2010, doi:10.1038/nature09149; Hain et al., 2010, doi:10.1029/2010gb003790). So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (Lambert et al., 2008, doi:10.1038/nature06763; Wolf et al., 2006, doi:10.1038/nature04614) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles (Martínez-Garcia et al., 2009; Lambert et al., 2008; Wolff et al., 2006), providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.
Resumo:
Dates and growth rates of iron-manganese nodules obtained by various direct and indirect methods, including radiometric, micropaleontological, geological and experimental, are discussed. Validity of assumptions, on which the radiometric dating of nodules is based and reliability of results are discussed. The problem of "buoyancy" of slow-growing nodules resting on the surface of faster-accumulating sediments is considered: It may be caused by action of deep-water fauna, bottom currents, or plastic properties of sediments.