851 resultados para Ramp rate constraints


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equilibrium melting and controlled cooling experiments were undertaken to constrain the crystallization and cooling histories of tholeiitic basalts recovered by the Ocean Drilling Program drilling of Site 989 on the Southeast Greenland continental margin. Isothermal experiments conducted at 1 atm. and at the fayalite-magnetite-quartz buffer using lava sample Section 163-989B-10R-7 yielded the equilibrium appearance sequence with decreasing temperature: olivine at 1184 ± 2ºC; plagioclase at 1177ºC ± 5ºC; augite at 1167 ± 5ºC; and pigeonite at 1113 ± 12ºC. In controlled cooling experiments using the same starting composition and cooling rates between 10ºC/hr and 2000ºC/hr, we find a significant temperature delay in the crystallization of olivine, plagioclase, and augite (relative to the equilibrium appearance temperature); pigeonite does not form under any dynamic crystallization conditions. Olivine exhibits the largest suppression in appearance temperature (e.g., 30º for 10ºC/hr and >190º at 100ºC/hr), while plagioclase shows the smallest (~10ºC at 10ºC/hr; 30ºC at 100ºC/hr, and ~80ºC at 1000ºC/hr). These results are in marked contrast to those obtained on lunar basalts, which generally show a large suppression of plagioclase crystallization and modest suppression of olivine crystallization with an increased cooling rate. The results we report agree well with the petrography of lavas recovered from Site 989. Furthermore, the textural analysis of run products, representing a large range of cooling rates and quench temperatures (1150ºC to 1000ºC), provide a framework for evaluating cooling conditions necessary for glass formation, rates of plagioclase growth, and kinetic factors governing plagioclase growth morphology. Specifically, we use these insights to interpret the textural and mineralogical features of the unusual compound flow recovered at Site 989. We concluded from the analysis that this flow most likely records multiple breakouts from a distal tube at an abrupt break in slope, possibly a fault scarp, resulting in the formation of a lava fan delta. This interpretation implies that normal faulting of the oldest lava sequences (lower and, possibly, middle series) preceded eruption of Site 989 lavas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (400 ?atm) and high pCO2 (1300 ?atm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic mass accumulation rates have been calculated for ODP Site 707 using depth-density and depth-porosity functions to estimate values for these parameters with increasing sediment thickness, at 1 Ma time intervals determined on the basis of published microfossil datums. These datums were the basis of the age model used by Peterson and Backman (1990, doi:10.2973/odp.proc.sr.115.163.1990) to calculate actual mass accumulation rate data using density and porosity measurements. A comparison is made between the synthetic and actual mass accumulation rate values for the time interval 37 Ma to the Recent for 1 Myr time intervals. There is a correlation coefficient of 0.993 between the two data sets, with an absolute difference generally less than 0.1 g/cm**2/kyr. We have used the method to extend the mass accumulation rate analysis back to the Late Paleocene (60 Ma) for Site 707. Providing age datums (e.g. fossil or magnetic anomaly data) are available the generation of synthetic mass accumulation rates can be calculated for any sediment sequence.