444 resultados para RIFTED-MARGIN
Resumo:
The effects of glaciation on sediment drifts is recognised from marked sedimentary facies variation in deep sea cores taken from the continental rise of the Antarctic Peninsula Pacific margin. Nineteen sediment cores were visually described, logged for magnetic susceptibility, and X-radiographed. About 1000 analyses were performed for grain size, clay minerals and biostratigraphy (foraminifera, nannofossils and diatoms). Four sediment types associated with distinct sedimentary processes are recognised based on textural/compositional analysis. (1) Hemipelagic mud forms the bulk of the interglacial sediment, and accumulated from the pelagic settling of bioclasts and ice-rafted/windtransported detritus. (2) Terrigenous mud forms the bulk of the glacial sediment, and accumulated from a combination of sedimentary processes including turbidity currents, turbid plumes, and bottom current reworking of nepheloid layers. (3) Silty deposits occurring as laminated layers and lenses, represent the lateral spillout of lowdensity turbidity currents. (4) Lastly, glacial/interglacial gravelly mud layers derive from settling of ice-rafted detritus. Five depositional settings are interpreted within sediment Drift 7, each characterised by the dominance/interaction of one or several depositional processes. The repetitive succession of typical sedimentary facies is inferred to reflect a sequence of four climatic stages (glaciation, glacial, deglaciation, and interglacial), each one characterised by a distinctive clay mineral assemblage and bioclastic content. Variations in clay mineral assemblage within interglacial stage 5 (core SED-06) suggest minor colder climatic fluctuations, possibly correlatable with substages 5a to 5e.
Resumo:
The Nd and Sr isotopic compositions of Quaternary glacial and glacimarine siliciclastic sediments deposited along the margin of southeast Greenland were determined to assess the roles of the Greenland, Iceland, and more distal ice sheets in delivering detritus to this portion of the northern North Atlantic. The isotopic compositions of detritus generated by portions of the southern Greenland Ice Sheet were defined through measurements of till and trough mouth fan sediments. Massive diamicts from the Scoresby Sund trough mouth fan show a restricted range of e-Nd (-11.8 to -16.6) and 87Sr/86Sr (0.7192-0.7246) consistent with their derivation from mixtures of sediments derived from Paleoproterozoic and/or Caledonian basement and Tertiary Greenland basalts. Further south at Kangerlussuaq, till isotopic compositions covary with the underlying basement type, with low e-Nd values in the inner fiord (-18.1) reflecting the erosion of the local Precambrian gneisses, but with higher e-Nd values (-2.3 to 2.5) found where the trough crosses East Greenland Tertiary basalts. Fine-grained (< 63 µm) sediments deposited along the southeast Greenland margin also show regular spatial isotopic variations. Ambient sediments and ice-rafted detritus in the southern Irminger Basin trend towards low e-Nd values (to ~ -28) and 87Sr/86Sr ratios (~ 0.711 to ~ 0.715) and are likely derived from proximal Archean gneisses of SE Greenland. Further north in the northern Irminger and Blosseville Basins, sediments trend toward much higher e-Nd (> -4) and low 87Sr/86Sr (< 0.709) reflecting a component derived from the local Iceland volcanic rocks and/or the East Greenland Tertiary basalts. In all three regions, the locally-derived detritus is intermixed with sediment with an intermediate e-Nd value (~ -10) and 87Sr/86Sr (~ 0.718) that was likely delivered by icebergs emanating from the Eurasian Ice Sheets and not from eastern Greenland. Deposition of glacial sediments from both proximal and distal (Eurasian) sources occurred adjacent to SE Greenland throughout the past 50 Ka, with periodic increases in IRD deposition at various times including those of Heinrich events 1, 2 and 4. These results suggest that at least the southern portions of the Greenland Ice Sheet experienced periodic instabilities during the Last Glacial period.
Resumo:
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced >4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5-11.5 km. Curiously <400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (>600°C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting >28 m.y., and induced by the steep continent-ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.
Resumo:
Detailed 14C AMS data and isotope based stratigraphies from high-resolution paleoceanographic records for the last 22 ka of cores from the upper continental slope off NE Brazil reveal sedimentation rates of up to 100 cm per 1000 yr. Variations in the sediment composition relate to changes in the input of terrigenous material. The sedimentation is controlled by sea level and by the climatic regime of the hinterland. Short-term changes in the tropical wind field may act as a climatic trigger. The zonality of the SE trades was probably increased and the monsoonal activity over Africa reduced during the Younger Dryas period.
Resumo:
With various low-temperature experiments performed on magnetic mineral extracts of marine sedimentary deposits from the Argentine continental slope near the Rio de la Plata estuary, a so far unreported style of partial magnetic self-reversal has been detected. In these sediments the sulphate-methane transition (SMT) zone is situated at depths between 4 and 8 m, where reductive diagenesis severely alters the magnetic mineral assemblage. Throughout the sediment column magnetite and ilmenite are present together with titanomagnetite and titanohematite of varying compositions. In the SMT zone (titano-)magnetite only occurs as inclusions in a siliceous matrix and as intergrowths with lamellar ilmenite and titanium-rich titanohematite, originating from high temperature deuteric oxidation within the volcanic host rocks. These abundant structures were visualized by scanning electron microscopy and analysed by energy dispersive spectroscopy. Warming of field-cooled and zero-field-cooled low-temperature saturation remanence displays magnetic phase transitions of titanium-rich titanohematite below 50 K and the Verwey transition of magnetite. A prominent irreversible decline characterizes zero-field cooling of room temperature saturation remanence. It typically sets out at ~210 K and is most clearly developed in the lower part of the SMT zone, where low-temperature hysteresis measurements identified ~210 K as the blocking temperature range of a titanohematite phase with a Curie temperature of around 240 K. The mechanism responsible for the marked loss of remanence is, therefore, sought in partial magnetic self-reversal by magnetostatic interaction of (titano-)magnetite and titanohematite. When titanohematite becomes ferrimagnetic upon cooling, its spontaneous magnetic moments order antiparallel to the (titano-)magnetite remanence causing an drastic initial decrease of global magnetization. The loss of remanence during subsequent further cooling appears to result from two combined effects (1) magnetic interaction between the two phases by which the (titano-)magnetite domain structure is substantially modified and (2) low-temperature demagnetization of (titano-)magnetite due to decreasing magnetocrystalline anisotropy. The depletion of titanomagnetite and superior preservation of titanohematite is characteristic for strongly reducing sedimentary environments. Typical residuals of magnetic mineral assemblages derived from basaltic volcanics will be intergrowths of titanohematite lamellae with titanomagnetite relics. Low-temperature remanence cycling is, therefore, proposed as a diagnostic method to magnetically characterize such alteration (palaeo-)environments.
Resumo:
The seismic data were acquired north of the Knipovich Ridge on the western Svalbard margin during cruise MSM21/4. They were recorded using a Geometrics GeoEel streamer of either 120 channels (profiles p100-p208) or 88 channels (profiles p300-p805) with a group spacing of 1.56 m and a sampling rate of 2 kHz. A GI-Gun (2×1.7 l) with a main frequency of ~150 Hz was used as a source and operated at a shot interval of 6-8 s. Processing of profiles p100-p208 and p600-p805: Positions for each channel were calculated by backtracking along the profiles from the GI-Gun GPS positions. The shot gathers were analyzed for abnormal amplitudes below the seafloor reflection by comparing neighboring traces in different frequency bands within sliding time windows. To suppress surface-generated water noise, a tau-p filter was applied in the shot gather domain. Common mid-point (CMP) profiles were then generated through crooked-line binning with a CMP spacing of 1.5625 m. A zero-phase band-pass filter with corner frequencies of 60 Hz and 360 Hz was applied to the data. Based on regional velocity information from MCS data [Sarkar, 2012], an interpolated and extrapolated 3D interval velocity model was created below the digitized seafloor reflection of the high-resolution streamer data. This velocity model was used to apply a CMP stack and an amplitude-preserving Kirchhoff post-stack time migration. Processing of profiles p400-p500: Data were sampled at 0.5 ms and sorted into common midpoint (CMP) domain with a bin spacing of 5 m. Normal move out correction was carried out with a velocity of 1500 m s-1 and an Ormsby bandpass filter with corner frequencies at 40, 80, 600 and 1000 Hz was applied. The data were time migrated using the water velocity.
Resumo:
The benthic foraminiferal populations along three traverses across the Northwest African continental margin were analyzed on the base of ca. 60 surface sediment samples. Depth ranges of 213 species were established and the main trends of vertical distribution are compared with those known from adjacent regions. Main faunal breaks occure at 100/200 m and 1000/1500 m depth of water. Some species show latitudinal distribution boundaries and the same applies to population density (standing stock), reflecting the regional distribution of nutrients supply by river discharge and upwelling processes. - High proportions of Bolivina test at the lower slope indicate extended downslope transport.
Resumo:
Nine hydrographic cruises were performed on the Gulf of Lion continental margin between June 1993 and July 1996. These observations are analysed to quantify the fluxes of particulate matter and organic carbon transported along the slope by the Northern Current and to characterise their seasonal variability. Concentration of particulate matter and organic carbon are derived from light-transmission data and water sample analyses. The circulation is estimated from the geostrophic current field. The uncertainty on the transport estimate, related to the error on the prediction of particle concentrations from light-transmission data and the error on velocities, is assessed. The particulate matter inflow entering the Gulf of Lion off Marseille is comparable to the Rhône River input and varies seasonally with a maximum transport between autumn and spring. These modifications result from variations of the water flux rather than variations of the particulate matter concentration. Residual transports of particulate matter and organic carbon across the entire Gulf of Lion are calculated for two cruises enclosing the domain that were performed in February 1995 and July 1996. The particulate matter budgets indicate a larger export from the shelf to deep ocean in February 1995 (110 ± 20 kg/s) than in July 1996 (25 ± 18 kg/s). Likewise, the mean particulate organic carbon export is 12.8 ± 0.5 kg/s in February 1995 and 0.8 ± 0.2 kg/s in July 1996. This winter increase is due to larger allochthonous and autochthonous inputs and also to enhanced shelf-slope exchange processes, in particular the cascading of cold water from the shelf. The export of particulate matter by the horizontal currents is moreover two orders of magnitude larger than the vertical particulate fluxes measured at the same time with sediment traps on the continental slope.
Resumo:
The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.
Resumo:
This paper documents the migration of the Polar Front (PF) over the Iberian margin during some of the cold climatic extremes of the last 45 ka. It is based on a compilation of robust and coherent paleohydrological proxies obtained from eleven cores distributed between 36 and 42°N. Planktonic delta18O (Globigerina bulloides), ice-rafted detritus concentrations, and the relative abundance of the polar foraminifera Neogloboquadrina pachyderma sinistral were used to track the PF position. These three data sets, compared from core to core, show a consistent evolution of the sea surface paleohydrology along the Iberian margin over the last 45 ka. We focused on five time slices representative of cold periods under distinct paleoenvironmental forcings: the 8.2 ka event and the Younger Dryas (two recent cold events occurring within high values of summer insolation), Heinrich events 1 and 4 (reflecting major episodes of massive iceberg discharges into the North Atlantic), and the Last Glacial Maximum (typifying the highest ice volume accumulated in the Northern Hemisphere). For each event, we generated schematic maps mirroring past sea surface hydrological conditions. The maps revealed that the Polar Front presence along the Iberian margin was restricted to Heinrich events. The sea surface conditions during the Last Glacial Maximum were close to those at present day, except for the northern sites which briefly experienced subarctic conditions.
Resumo:
Late Pleistocene intermediate water ventilation history in the northeastern Pacific has been inferred from benthic foraminiferal carbon isotopic data from seven California margin basins. Secular variations in oceanic d13C recorded at North Pacific ODP Site 849 were subtracted from each basin record leaving a residual d13C history that reflects variations in ventilation. During the previous interglacial intermediate waters above 2000m contained less oxygen than they do today or Pacific deep water at Site 849 was better ventilated. Intermediate water ventilation began to improve during oxygen isotope stage 4 and continued to improve throughout stages 3 and 2. This enhanced ventilation was not contemporaneous at all depths and appears to have progressed upwards through the water column. The diachronous nature of these changes suggest that there was not simply an "on"/"off" mechanism which resulted in higher or lower ventilation in the North Pacific during the last glacial cycle.
Resumo:
A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet (CIS) retreat and changing regional ocean temperatures has been reconstructed through glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C. These ocean temperatures were sufficiently warm to induce significant melt along the tidewater ice terminus similar to modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. pachyderma temperature record shows two distinct warming steps of ~2 and 2.5°C between 17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. bulloides records an ~3°C warming from 15 to14 ka. We hypothesize that submarine melting resulting from relatively warm ocean temperatures was an important process driving ice removal from CIS tidewater glaciers during the initial stages of deglaciation.
Resumo:
Glacial-interglacial changes in sedimentary d15N over the last 120 kyr display a remarkably similar pattern in timing and amplitude in core records extending from the denitrification zone in the eastern tropical North Pacific (ETNP), where subsurface denitrification is active, to the Oregon margin, where no denitrification occurs today. Low d15N values (4-6 per mil) generally characterize glacial stages 2 and 4, and higher d15N values (7-10 per mil) are representative of the Holocene, millennial-scale periods within stage 3, and stage 5. The inferred synchroneity of d15N variations along the entire margin implies that the nitrate isotopic signal produced in the oxygen-poor subsurface waters in the ETNP is rapidly advected northward and recorded at sites far beyond the boundaries of the modern denitrification zone. Similar to d15N, primary production indicators (percent Corg, Ba/Al, and percent opal) show glacial-interglacial as well as millennial-scale variations along the NE Pacific margin, with higher primary production during warm periods. However, the relative phasing between d15N and paleoproduction tracers within individual records changes latitudinally. Whereas d15N and primary production vary approximately synchronously in the midlatitudes, production lags d15N in the ETNP by several kiloyears. This lag calls for a new understanding of the processes driving denitrification in the ETNP. We suggest that oxygen input by the Equatorial Undercurrent as well as local organic matter flux controls denitrification rates in the ETNP. Moreover, the differences in relative timing point to a time-transgressive development of upwelling-favorable winds along the NE Pacific margin after the last glaciation, with those in the north developing several kiloyears earlier.