119 resultados para Passive heating and cooling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution oxygen and carbon isotope stratigraphy is presented for Miocene to early Pliocene sequences at three DSDP sites from the Lord Howe Rise, southwest Pacific, at water depths ranging from 1,300 to 2,000 m. Site 588 is located in the warm subtropics (~26°S), whereas Sites 590 and 591 are positioned in transitional (northern temperate) water masses (~31°S). Benthic foraminiferal oxygen and carbon isotope analyses were conducted on all sites; planktonic foraminiferal isotope data were generated for Site 590 only. Sample resolution in these sequences is on the order of 50,000 yr. or better. The chronological framework employed in this study is based largely upon ages assigned to Neogene calcareous nannoplankton boundaries. The benthic oxygen isotope record exhibits several major features during the Neogene. During most of the early Miocene, delta18O values were relatively low, reaching minimum values in the late early Miocene (19.5 to 16.5 Ma), and recording the climax of Neogene warmth. This was followed by a major increase in benthic delta18O values between ~16.5 and 13.5 Ma, which is interpreted as representing major, permanent accumulation of the East Antarctic ice sheet and cooling of bottom waters. During the 3 m.y. 18O enrichment, surface waters at these middle latitudes warmed between 16 and 14.5 Ma. During the remainder of the middle and late Miocene, benthic delta18O values exhibit distinct fluctuations, but the average value remained unchanged. The isotopic data show two distinct episodes of climatic cooling close to the middle/late Miocene boundary. The earliest of these events occurred between 12.5 and 11.5 Ma in the latest middle Miocene. The second cooling event occurred from 11 to 9 Ma, and is marked by some of the highest delta18O values of the entire Miocene. This was followed by relative warmth during the middle part of the late Miocene. The latest Miocene and earliest Pliocene (6.2 to 4.5 Ma) were marked by relatively high delta18O values, indicating increased cooling and glaciation. During the middle Pliocene, at about 3.4 Ma, a 0.4 per mil increase in benthic delta18O documents a net increase in average global ice volume and cooling of bottom waters. During this interval of increased glaciation, surface waters warmed by 2-3°C in southern middle-latitude regions. During the late Pliocene, between 2.6 and 2.4 Ma, a further increase in delta18O occurred; this has been interpreted by previous workers as heralding the onset of Northern Hemisphere glaciation. Surface-water warming in the middle latitudes occurred in association with major high-latitude glacial increases in the early middle Miocene (16-14 Ma), middle Pliocene (-3.5 Ma), and late Pliocene (~2.4 Ma). These intervals were also marked by increases in the vertical temperature gradient in the open ocean. Intersite correlation is enhanced by using carbon isotope stratigraphy. The great similarity of the delta13C time-series records within and between ocean basins and with water depth clearly indicates that changes in oceanwide average delta13C of [HCO3]- in seawater dominated the records, rather than local effects. Broad changes in the Neogene delta13C record were caused largely by transfer of organic carbon between continental and oceanic reservoirs. These transfers were caused by marine transgressions and regressions on the continental margins. The dominant feature of Neogene delta13C stratigraphy is a broad late early to early middle Miocene increase of about lâ between ~19 and 14.5 Ma. This trend occurred contemporaneously with a period of maximum coastal onlap (transgression) and maximum Neogene climatic warmth. The delta13C trend terminated during the expansion of the Antarctic ice sheet and associated marine regression. The latest Miocene carbon isotope shift (of up to - 0.75 per mil) at 6.2 Ma is clearly recorded in all sites examined and was followed by relatively low values during the remainder of the Neogene. This shift was caused by a glacioeustatic sealevel lowering that exposed continental margins via regression and ultimately increased the flux of organic carbon to the deep sea. An increase in delta13C values during the early Pliocene (~5 to 4 Ma) resulted from marine transgression during a time of global warmth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the composition of benthic foraminiferal faunas at Deep Sea Drilling Project Site 575 in the eastern equatorial Pacific Ocean were combined with benthic and planktonic carbon- and oxygen-isotope records and CaCO3 data. Changes in the composition of the benthic foraminiferal faunas at Site 575 predated the middle Miocene period of growth of the Antarctic ice cap and cooling of the deep ocean waters by about 2 m.y., and thus were not caused by this cooling (as has been proposed). The benthic faunal changes may have been caused by increased variability in corrosivity of the bottom waters, possibly resulting from enhanced productivity in the surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Published stable isotope records in marine carbonate are characterized by a positive d18O excursion associated with a negative d13C shift during the early Maastrichtian. However, the cause and even the precise timing of these excursions remain uncertain. We have generated high-resolution foraminiferal stable isotope and gray-scale records for the latest Campanian to early Maastrichtian (73-68 Ma) at two Ocean Drilling Program sites, 525 (Walvis Ridge) and 690 (Weddell Sea). We demonstrate that the negative d13C excursion is decoupled from the d18O increase with a lag of about 600 ka. Our d13C records (both planktic and benthic) show an amplitude for the negative excursion of 0.7 per mill that falls between about 72.1 and 70.7 Ma. Our planktic d18O records indicate an overall increase of 1.2 per mill from 73 to 68 Ma at Site 690, whereas at Site 525 they record a slightly smaller increase (1 per mill) that peaks around 70.1 Ma with decreasing values thereafter. Our benthic d18O data indicate an increase of 1.5 per mill at Site 525 and 0.7 per mill at Site 690 between about 71.4 and 69.9 Ma. Benthic d18O values show different baseline values at the two sites before and after the excursion, but the larger increase at Site 525 means that the values attained at the peak of the excursion are similar at the two sites. We interpret this observation in terms of water mass changes. The excursion is interpreted to reflect a cooling of bottom waters in response to the strengthening contribution of intermediate- to deep-water production in the high southern latitudes rather than increased ice volume. The associated carbon cycle perturbations that we observe are interpreted to reflect a weakening of surface water stratification and increased productivity, as supported by our gray value data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal fluids expelled from the seafloor at high and low temperatures play pivotal roles in controlling seawater chemistry. However, the magnitude of the high temperature water flux of mid-ocean ridge axes remains widely disputed and the volume of low temperature vent fluids at ridge flanks is virtually unconstrained. Here, we determine both high and low temperature hydrothermal fluid fluxes using the chemical and isotopic mass balance of the element thallium (Tl) in the ocean crust. Thallium is a unique tracer of ocean floor hydrothermal exchange because of its contrasting behavior during seafloor alteration at low and high temperatures and the distinctive isotopic signatures of fresh and altered MORB and seawater. The calculated high temperature hydrothermal water flux is (0.17-2.93)*10**13 kg/yr with a best estimate of 0.72*10**13 kg/yr. This result suggests that only about 5 to 80% of the heat available at mid-ocean ridge axes from the crystallization and cooling of the freshly formed ocean crust, is released by high temperature black smoker fluids.The residual thermal energy ismost likely lost via conduction and/or through the circulation of intermediate temperature hydrothermal fluids that do not alter the chemical budgets of Tl in the ocean crust. The Tl-based calculations indicate that the low temperature hydrothermal water flux at ridge flanks is (0.2-5.4)*10**17 kg/yr. This implies that the fluids have an average temperature anomaly of only about 0.1 to 3.6 °C relative to ambient seawater. If these low temperatures are correct then both Sr and Mg are expected to be relatively unreactive in ridge-flank hydrothermal systems and this may explain why the extent of basalt alteration that is observed for altered ocean crust appears insufficient to balance the oceanic budgets of 87Sr/86Sr and Mg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar-type helium (He) and neon (Ne) in the Earth's mantle were suggested to be the result of solarwind loaded extraterrestrial dust that accumulated in deep-sea sediments and was subducted into the Earth's mantle. To obtain additional constraints on this hypothesis, we analysed He, Ne and argon (Ar) in high pressure-low temperature metamorphic rocks representing equivalents of former pelagic clays and cherts from Andros (Cyclades, Greece) and Laytonville (California, USA). While the metasediments contain significant amounts of 4He, 21Ne and 40Ar due to U, Th and K decay, no solar-type primordial noble gases were observed. Most of these were obviously lost during metamorphism preceding 30 km subduction depth. We also analysed magnetic fines from two Pacific ODP drillcore samples, which contain solar-type He and Ne dominated by solar energetic particles (SEP). The existing noble gas isotope data of deep-sea floor magnetic fines and interplanetary dust particles demonstrate that a considerable fraction of the extraterrestrial dust reaching the Earth has lost solar wind (SW) ions implanted at low energies, leading to a preferential occurrence of deeply implanted SEP He and Ne, fractionated He/Ne ratios and measurable traces of spallogenic isotopes. This effect is most probably caused by larger particles, as these suffer more severe atmospheric entry heating and surface ablation. Only sufficiently fine-grained dust may retain the original unfractionated solar composition that is characteristic for the Earth's mantle He and Ne. Hence, in addition to the problem of metamorphic loss of solar noble gases during subduction, the isotopic and elemental fractionation during atmospheric entry heating is a further restriction for possible subduction hypotheses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lengthy warm, stable climate of the Cretaceous terminated in the Campanian with a cooling trend, interrupted in the early and latest Maastrichtian by two events of global warming, at ~70-68 Ma and at 65.78-65.57 Ma. These climatic oscillations had a profound effect on pelagic ecosystems, especially on planktic foraminiferal populations. Here we compare biotic responses in the tropical-subtropical (Tethyan) open ocean and mesotrophic (Zin Valley, Israel) and oligotrophic (Tunisia) slopes, which correlate directly with global warming and cooling. The two warming events coincide with blooms of Guembelitria, an extreme opportunist genus best known as the main survivor of the Cretaceous-Paleogene (K-Pg) catastrophe. In the Maastrichtian, Guembelitria bloomed in the uppermost surface water above shelf and slope environments but failed to reach the open ocean as it did at K-Pg. The coldest interval of the late Maastrichtian (~68-65.78 Ma) is marked by an acme of the otherwise rare species Gansserina gansseri, a deep-dwelling keeled globotruncanid. The G. gansseri acme event can be traced from the deep ocean even onto the Tethyan slope, marking copious production and circulation of cold intermediate water. This acme is abruptly terminated by extinction of the species, a dramatic reversal attributed to a short-term global warming episode. This extinction corresponds precisely with the second bloom of Guembelitria that began ~300 kyr prior to the K-Pg event. The antithetical relationship between blooming of Guembelitria and the G. gansseri acme reflects planktic foraminiferal sensitivity to warm-cool-warm-cool climatic oscillations marking the end of the Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neogene calcareous nannofossils were examined from 10 holes at three sites cored during ODP Leg 105. Sediment recovered in Baffin Bay at Site 645 is virtually barren of calcareous nannofossils, with the exception of a sparse lower Miocene assemblage. Sites 646 and 647 in the Labrador Sea contain upper Miocene to Holocene sediments having numerous barren intervals. Upper Pleistocene fossil coccolithophorid floras in the Labrador Sea indicate alternations of cold subpolar with transitional (subpolar/subtropical) assemblages. Extreme variations in the abundance of Coccolithus pelagicus were observed at Sites 646 and 647. These variations are correlated with stable isotopic data to interpret oceanographic responses to warming and cooling trends. The climatic history indicated by the changes of these assemblages closely approximates the past climatic fluctuations recorded in other North Atlantic cores. One new taxon, Discoaster bergenii, is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic Anoxic Event 2 (OAE2), spanning the Cenomanian-Turonian boundary (CTB), represents one of the largest perturbations in the global carbon cycle in the last 100 Myr. The d13Ccarb, d13Corg, and d18O chemostratigraphy of a black shale-bearing CTB succession in the Vocontian Basin of France is described and correlated at high resolution to the European CTB reference section at Eastbourne, England, and to successions in Germany, the equatorial and midlatitude proto-North Atlantic, and the U.S. Western Interior Seaway (WIS). Delta13C (offset between d13Ccarb and d13Corg) is shown to be a good pCO2 proxy that is consistent with pCO2 records obtained using biomarker d13C data from Atlantic black shales and leaf stomata data from WIS sections. Boreal chalk d18O records show sea surface temperature (SST) changes that closely follow the Delta13C pCO2 proxy and confirm TEX86 results from deep ocean sites. Rising pCO2 and SST during the Late Cenomanian is attributed to volcanic degassing; pCO2 and SST maxima occurred at the onset of black shale deposition, followed by falling pCO2 and cooling due to carbon sequestration by marine organic productivity and preservation, and increased silicate weathering. A marked pCO2 minimum (~25% fall) occurred with a SST minimum (Plenus Cold Event) showing >4°C of cooling in ~40 kyr. Renewed increases in pCO2, SST, and d13C during latest Cenomanian black shale deposition suggest that a continuing volcanogenic CO2 flux overrode further drawdown effects. Maximum pCO2 and SST followed the end of OAE2, associated with a falling nutrient supply during the Early Turonian eustatic highstand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major deterioration in global climate occurred through the Eocene-Oligocene time interval, characterized by long-term cooling in both terrestrial and marine environments. During this long-term cooling trend, however, recent studies have documented several short-lived warming and cooling phases. In order to further investigate high-latitude climate during these events, we developed a high-resolution calcareous nannofossil record from ODP Site 748 Hole B for the interval spanning the late middle Eocene to the late Oligocene (~42 to 26 Ma). The primary goals of this study were to construct a detailed biostratigraphic record and to use nannofossil assemblage variations to interpret short-term changes in surface-water temperature and nutrient conditions. The principal nannofossil assemblage variations are identified using a temperate-warm-water taxa index (Twwt), from which three warming and five cooling events are identified within the middle Eocene to the earliest Oligocene interval. Among these climatic trends, the cooling event at ~39 Ma (Cooling Event B) is recorded here for the first time. Variations in fine-fraction d18O values at Site 748 are associated with changes in the Twwt index, supporting the idea that significant short-term variability in surface-water conditions occurred in the Kerguelen Plateau area during the middle and late Eocene. Furthermore, ODP Site 748 calcareous nannofossil paleoecology confirms the utility of these microfossils for biostratigraphic, paleoclimatic, and paleoceanographic reconstructions at Southern Ocean sites during the Paleogene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Longling Coal Mine (W. Yunnan) is situated in an area of substantial geotectonic activity. Its Late Pliocene palynoflora is of considerable interest, since the area represents a centre of biodiversity. Eighty-two palynomorphs belonging to 61 families were recovered from the lignite. The palynoflora is dominated by angiosperms (68.3%), with ferns (24.4%), gymnosperms (4.9%) and algae (2.4%). Comparisons indicate that most of the palynoflora was derived from the Montane Humid Evergreen Broad-leaved Forest, with lesser contributions from the Tsuga dumosa Forest and Evergreen Coniferous Broad-leaved Mixed Forest, as well as the Montane Mossy Evergreen Broad-leaved Forest. This indicates that the Late Pliocene climate was cooler than that of the present. In the course of the accumulation of the lignite, the climate underwent five major phases of warming and cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk'37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses were revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of diatoms in core HC11 collected from the southwestern part of Chukchi Sea, allowed to distinguish 3 diatoms ecological zones, reflecting paleoenvironmental changes during the last 2300 years. The sediment age was based on the sedimentation rates, determined by 210Pb and radiocarbon dating of mollusk shells. The environmental changes of Chukchi Sea revealed by examination of diatoms correlates with global climate changes - the warming of the early and middle Subatlantic and cooling of the late Subatlantic (Little Ice Age). Warming early and middle Subatlantic in the Chukchi Sea was probably stronger than the warming of the late 20th century and was not accompanied by significant changes in sea level.