116 resultados para Particle-hole asymmetry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 10Be/9Be-based chronostratigraphy has been determined for ODP 181, Site 1121 sediment core, recovered from the foot of the Campbell Plateau, Southwest Pacific Ocean. This core was drilled through the Campbell 'skin drift' in ca. 4500 m water depth on the mid-western margin of the extensive Campbell Nodule Field, beneath the flow of the major cold-water Deep Western Boundary Current (DWBC). In the absence of detailed biostratigraphy, beryllium isotopes have provided essential time information to allow palaeo-environmental interpretation to be undertaken on the upper 7 m of the core. Measured 10Be/9Be ratios of sediment, and of ferromanganese nodules entrapped in the sediment, decrease systematically with depth in the core, in accordance with radioactive decay. However, the 10Be/9Be data diverge from ca. 3 m below the seafloor (mbsf) to the top of the core, giving rise to several possible geochronological models. The preferred model assumes that the measured 10Be/9Be ratios of the nodule rims reflect initial 10Be/9Be ratios equivalent to contemporary seawater, and that these can be used to derive the true age of the sediment where the nodules occur. The nodule rim ages can be then used to interpret the sediment 10Be/9Be data, which indicate an overall age to ca. 7 mbsf of ca. 17.5 Ma. The derived chronology is consistent with diatom biostratigraphy, which indicates an age of 2.2-3.6 Ma at 1 mbsf. Calculated sedimentation rates range from 8 to 95 cm m.y.**-1, with an overall rate to 7 mbsf of ca. 39 cm m.y.**-1. The lowest rates generally coincide with the occurrence of entrapped nodules, and reflect periods of increased bottom current flow causing net sediment loss. Growth rates of individual nodules decrease towards the top of the sediment core, similar to the observed decrease in growth rate from core to rim of seafloor nodules from the Campbell Nodule Field. This may be related to an overall increase in the vigour of the DWBC from ca. 10 Ma to the present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a high-resolution 10Be profile from deep sea sediments (sampled from Hole 502B in the Caribbean sea) that strongly resembles the 10Be record in ice core profiles, particularly the Vostok core from Antarctica. This high-resolution profile revealed occurrences of enhanced 10Be concentrations at about 23-24, 37-39 and 60-65 ka. The excellent match between these peaks appearing in a georeservoir profile other than in polar ice, strengthens the implications that can be inferred from 10Be and provide global markers for chronological correlation of climatic events. The position at low latitude of the studied sediment section is, unlike the case with the high latitude polar regions, excellent for exposing causes of modulation in 10Be production. We interpret the source of the pattern and enhancements, particularly the 37-39 ka peak, of 10Be to be global and do not strictly relate to climatic conditions and/or production rates specific to the polar regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the objectives of drilling at Site 1179 was to search for microbes or biochemical evidence of microbial activity as part of the ongoing exploration of the depth and extent of the deep biosphere. The existence of living microbes has not been confirmed, but the chemistry of pore waters from the site, such as sulfate and ammonium profiles, is consistent with sulfate reduction and nitrification by anaerobic bacteria. However, chemical profiles are affected by the movement of molecules and ions through porous sediments by diffusion and advection. Permeability is thus an important consideration in the interpretation of pore water chemistry profiles. Moreover, diatomaceous sediments have some unique and, as yet, poorly understood physical properties. The purpose of this research is to measure hydraulic conductivity (permeability) in a suite of sediment samples from Ocean Drilling Program Site 1179 by the transient-pulse method. The sample set consists of four diatom ooze samples from Unit I, one radiolarian ooze sample from Unit II, and one pelagic clay sample from Unit III. The permeability of the clay is 1.92 µd, whereas the permeabilities of the overlying radiolarian and diatom oozes range from 289 to 1604 µd. Among these samples, permeability increases with porosity and grain size, in keeping with the results of previous studies.