304 resultados para Nd:YVO4
(Table 11) Al and Nd concentrations from several HH extractions of sediments from the Atlantic Ocean
Resumo:
The freshwater budget of the Arctic Ocean is a key component governing the deep water formation in the North Atlantic and the global climate system. We analyzed the isotopic composition of neodymium (epsilon-Nd) in authigenic phases of marine sediments on the Mendeleev Ridge in the western Arctic Ocean spanning an estimated time interval from present to about 75 ka BP. This continuous record was used to reconstruct the epsilon-Nd of the polar deep water (PDW) and changes in freshwater sources to the PDW through time. Three deviations in epsilon-Nd from a long term average of -10.2 were identified at estimated 46-51, 35-39 and 13-21 ka BP. The estimated 46-51 ka BP event can be traced to bursting of ice-dammed lakes accompanying the collapse of the Barents-Kara Ice Sheet, which would have released radiogenic Nd to the eastern Arctic Ocean. The cyclonic surface circulation in the eastern Arctic Ocean must have been stronger than at present for the event to be recorded on the Mendeleev Ridge. For the 35-39 and 13-21 ka BP events, it is likely that the Laurentide Ice Sheet (LIS) supplied the unradiogenic freshwater. The configuration of the anticyclonic circulation in the western Arctic was probably similar to today or expanded eastward. Our simple mass balance calculations suggest that large amounts of freshwater were released but due to significant deep water formation within the Arctic Ocean, the effect on the formation of NADW was probably minor.
Resumo:
Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.
Resumo:
The flow of deep-water masses is a key component of heat transport in the modern climate system, yet the role of deep-ocean heat transport during periods of extreme warmth is poorly understood. The present mode of meridional overturning circulation is characterized by deep-water formation in both the North Atlantic and the Southern Ocean. However, a different mode of meridional overturning circulation operated during the extreme greenhouse warmth of the early Cenozoic, during which time the Southern Ocean was the dominant region of deep-water formation. The combination of general global cooling and tectonic evolution of the Atlantic basins over the past ~55 m.y. ultimately led to the development of a mode of overturning circulation characterized by both Southern Ocean and North Atlantic deep-water sources. The change in deep-water circulation mode may, in turn, have affected global climate; however, unraveling the causes and consequences of this transition requires a better understanding of the timing of the transition. New Nd isotope data from the southeastern Atlantic Ocean indicate that the initial transition to a bipolar mode of deep-water circulation occurred in the early Oligocene, ca. 33 Ma. The likely cause of significant deep-water production in the North Atlantic was tectonic deepening of the sill separating the Greenland-Norwegian Sea from the North Atlantic.
Resumo:
We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.
Resumo:
ODP Leg 104 recovered 914 m of volcanics at Site 642 on the Vøring Plateau in the Norwegian Sea. The upper series of these volcanics correlates with seaward-dipping seismic reflectors (DRS), and is tholeiitic in character. The lower series underlies the DRS and is broadly andesitic in character. Rb-Sr, Sm-Nd, and Pb isotopic analyses show that upper series samples have isotopic features characteristic of MORB, except for one dike sample that has a Pb isotopic composition that may indicate interaction of its parent magma with older continental crust. The five most silicic samples from the lower series, which occur high up in the sequence, define a 63 ± 19 Ma Rb-Sr whole-rock isochron age, and have an initial 87Sr/86Sr of 0.7116 ± 0.0004. Other lower series samples have lower initial 87Sr/86Sr, but all are greater than any upper series rock. The combined evidence of initial 87Sr/86Sr, initial epsilon-Nd values, Sm-Nd model ages, Pb isotopic compositions, and petrographic features clearly indicate that lower series rocks were derived, at least in part, from continental crustal source materials. That the DRS is underlain by rocks of continental character is an important observation, constraining models for the development of DRS-type passive continental margins.