267 resultados para Mineralogical chemistry
Resumo:
We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7.41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms.
Resumo:
Two cores from the southern South China Sea contain discrete ash layers that mainly consist of rhyolithic glass shards. On the basis of the SPECMAP time scale, the ash layers were dated to ca. 74 ka, the age of the youngest Toba eruption in northern Sumatra. This link is supported by the chemical composition of the glass, which is distinct from volcanic glass supplied from the Philippines and the northern South China Sea, but is almost identical with the chemistry of the Toba ash. The youngest Toba ash layers in the South China Sea expand the previously known ash-fall zone over more than 1800 km to the east. The dispersal of ashes from Sumatra in both western and eastern directions indicates two contrasting wind directions and suggests that (1) the Toba eruption probably happened during the Southeast Asian summer monsoon season, and (2) the volume of erupted magma was larger than previously interpreted.
Resumo:
The quantity and quality of organic carbon of Eocene to Holocene sediments from ODP Sites 645, 646, and 647 were investigated to reconstruct depositional environments. Results were based on organic-carbon and nitrogen determinations, Rock-Eval pyrolysis, and kerogen microscopy. The sediments at Site 645 in Baffin Bay are characterized by relatively high organic-carbon values, most of which range from 0.5% to almost 3%, with maximum values in the middle Miocene. Distinct maxima of organic-carbon accumulation rates occur between 18 and 12.5 Ma and between 3.4 and 0 Ma. At Sites 646 and 647 in the Labrador Sea, organic-carbon contents vary between 0.1% and 0.75%. Cyclic 'Milankovitch-type' changes in organic-carbon deposition imply climate-controlled mechanisms that cause these fluctuations. The composition of organic matter at Site 645 is dominated by terrigenous components throughout the entire sediment sequence. An increased content of marine organic carbon was recorded only in the late-middle Miocene. At Sites 646 and 647, the origin of the organic matter most probably is marine. Oceanic paleoproductivity values were estimated, based on the amount of marine organic carbon. During most of the Neogene time interval at Site 645, productivity was low, i.e., similar or less than that measured in Baffin Bay today. Higher values of up to 150 (200) gC/m**2/y may have occurred only in the Miocene. At Sites 646 and 647, mean paleoproductivity values vary between 90 and 170 gC/m**2/y; i.e., these are also similar to those measured in the Labrador Sea today. Lower values of 40 to 70 gC/m**2/y were estimated for the early Eocene and (middle) Miocene.
Resumo:
Analyses of water samples taken by means of an in-hole sampler generally show good agreement with analyses of samples collected by routine shipboard squeezing techniques. At Sites 438 and 439, a decrease in salinity with depth is related to former freshwater flow from an aquifer that crops out at an anticline on a deep sea terrace between Japan and the top of the trench slope of the Japan Trench. This former subaerial recharge suggests significant late Cenozoic subsidence of the terrace, because it now lies at a water depth of 1500 meters. Samples from the trench slope at Site 440 have extremely high values of alkalinity and ammonia, presumably because of a favorable combination of high sedimentation rate and organic carbon content. Diagenetic conditions on the trench slope favor formation of the Fe-Mg carbonate mineral, ankerite; at Site 440 it first occurs at a depth below the sea floor of only 29 meters in late Pleistocene strata. Undissolved diatoms persist to relatively great depth at the sites of Leg 57 because of a low geothermal gradient caused by subduction. Secondary silica lepispheres first appear at 851 meters at the most landward and warmest site, Site 438, in strata 16 million years old with an ambient temperature of 31 °C.
Resumo:
Suites of basalts drilled during Legs 127 and 128 can be distinguished by their mineral assemblages and compositions of phenocrysts and groundmass phases. An upper suite of plagioclase phyric basaltic sills with a groundmass composed of plagioclase, augite, and magnetite was recovered from Site 794. The upper, evolved part of this suite is highly plagioclase phyric, including calcic plagioclases (~An90). The most primitive, lower part of this upper suite, in addition, contains olivine, but lacks calcic plagioclase. A lower suite at Site 794 is plagioclase and olivine phyric to aphyric basaltic sills and flows with a groundmass of plagioclase, augite, olivine (~Fo75-83), and magnetite. At Site 795, plagioclase and augite phyric basalts and andesites were recovered. The relatively low Ti and Cr contents of augite of these basalts suggest typical arc tholeiitic parental magmas. Two suites of basalt were recovered from Site 797, an upper suite of plagioclase and olivine phyric to aphyric olivine basalts, and a lower suite of evolved plagioclase phyric basaltic sills. The most evolved sills at both sites lack olivine as phenocryst and groundmass phases, while this phase is present in the relatively primitive sills. The olivine-bearing suites contain plagioclase with relatively low potassium content and augite with relatively high sodium content. An exception is the olivine-bearing sills of the upper suite at Site 794 that contains plagioclase with relatively high potassium content similar to the associated olivine-free sills. The olivine-free suites contain plagioclase with high potassium content and augite with low sodium content and have the most evolved compositions of any of the Japan Sea rocks.