341 resultados para Melt Compositions
Resumo:
The thermal effects of three (one major and two minor) Miocene diabase intrusions on Cretaceous black shales from DSDP site 41-368 have been analyzed. A concentration gradient was observed, especially for the hydrocarbons, decreasing towards the major intrusion and between the three sills. The thermally-altered samples in the proximity of and between the sills contained elemental sulfur and an excess of thermally-derived pristane over phytane. whereas, the unaltered sediments contained no elemental sulfur, and more phytane than pristane. A maximum yield of the extractable hydrocarbons was observed at a depth of 7 m below the major sill. Two classes of molecular markers were present in this bitumen suite. The first was sesqui-, di- and triterpenoids and steranes. which could be correlated with both terrigenous and autochthonous sources. They were geologically mature and showed no significant changes due to the thermal stress. The second class was found in the altered samples, which contained only polynuclear aromatic hydrocarbons with low alkyl substitution and sulfur and oxygen heterocyclic aromatic compounds. These compounds were derived from pyrolytic reactions during the thermal event. Kerogen was isolated from all of these samples, but only traces of humic substances were present. The H/C, N/C, d13C, d34S and dD all exhibit the expected effects of thermal stress. The kerogen becomes more aromatized and richer in 13C, 34S and D in the proximity of and between the sills. Maturation trends were also measured by the vitrinite reflectance and electron spin resonance, where the thermal stress could be correlated with an elevated country rock temperature and an increased degree of aromaticity. The effects of in situ thermal stress on the organic-rich shales resulted in the generation and expulsion of petroliferous material from the vicinity of the sills.
Resumo:
The clay mineral composition at IODP Exp. 323 Site U1343 in the Bering Sea was analyzed so as to unravel their provenance over glacial-interglacial cycles for the last 2.4 Ma. Smectite was negatively correlated with the sum of illite and chlorite; therefore, their ratio [S/(I + C)] was used as an indicator of clay mineral composition changes. In general, the S/(I + C) ratio was rather similar for glacial and interglacial periods during most of the last 2.4 Ma. In addition, these results overlap with those of surface sediments in the modern East Aleutian Basin, which suggests that smectite-rich clay particles are delivered from the Aleutians by the northward Bering Slope Current (BSC) rather than from rivers in western Alaska. However, some clay mineral compositions of the glacial periods after the Mid-Pleistocene Transition (MPT: 1.25-0.7 Ma) were characterized by low illite and relatively high smectite. During this period, extensive ice-rafting might have transported the smectite-rich clay particles to Site U1343 from the glacial shelf off Alaska and/or from glacial rivers from that area.
Resumo:
The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO4, HCO3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,=1000 years). The extensive diagenetic processes in the Tonga margin were mostly caused by the recent intrusion of andesite sills and dikes into the Miocene sediments.
Resumo:
We have compiled the first stratigraphically continuous high-resolution benthic foraminiferal stable isotope record for the Paleocene from a single site utilizing cores recovered at Pacific ODP Site 1209. The long-term trend in the benthic isotope record suggests a close coupling of volcanic CO2 input and deep sea warming. Over the short-term the record is characterized by slow excursions with a pronounced periodic beat related to the short (100-kyr) and long (405-kyr) eccentricity cycle. The phase relationship between the benthic isotope record and eccentricity is similar to patterns documented for the Oligocene and Miocene confirming the role of orbital forcing as the pace maker for paleoclimatic variability on Milankovitch time scales. In addition, the record documents an unusual transient warming of 2°C coeval with a 0.6 per mil carbon isotope excursion and a decrease in carbonate content at 61.75 Ma. This event, which bears some resemblance to Eocene hyperthermals, marks the onset of a long-term decline in d13C. The timing indicates it might be related to the initiation of volcanism along Greenland margin.
Resumo:
Features of sedimentation of carbonate mineral associations in the northeastern shelf of Sakhalin and other regions of the Sea of Okhotsk are considered. Special attention is paid to correlation between carbonate neoformations and abnormal fluxes of methane. In bottom sediments with high contents of methane carbonate-sulfide associations occur, their generation has been influenced by gas (mostly methane) fields. Joint consideration of distribution of gas and geochemical fields and mineral associations in the Sea of Okhotsk allows to understand better a mechanism of mineral generation in bottom sediments, possible formation of ore accumulations, and to use them as indicators for prognosis of mineral resources.
Resumo:
The distribution of Li isotopes in pore waters to a depth of 1157 m below seafloor is presented for ODP Sites 918 and 919 in the Irminger Basin, offshore Greenland. Lithium isotope data are accompanied by strontium isotope ratios to decipher diagenetic reactions in the sediments which are characterized by the pervasive presence of volcanic material, as well as by very high accumulation rates in the upper section. The lowering of the 87Sr/86Sr ratio below contemporaneous seawater values indicates several zones of volcanic material alteration. The Li isotope profiles are complex suggesting a variety of exchange reactions with the solid phases. These include cation exchange with NH4+ and mobilization from sediments at depth, in addition to the alteration of volcanic matter. Lithium isotopes are, therefore, a sensitive indicator of sediment-water interaction. d6Li values of pore waters at these two sites vary between -42 and -25?. At shallow depths (<100 mbsf), rapid decreases in the Li concentration, accompanied by a shift to heavier isotopic compositions, indicate uptake of Li into alteration products. A positive anomaly of d6Li observed at both sites is coincident with the NH4+ maximum produced by organic matter decomposition and may be related to ion exchange of Li from the sediments by NH4+. In the lower sediment column at Site 918, dissolved Li increases with depth and is characterized by enrichment of 6Li. The Li isotopic compositions of both the waters and the solid phase suggest that the enrichment of Li in deep interstitial waters is a result of release from pelagic sediments. The significance of sediment diagenesis and adsorption as sinks of oceanic Li is evaluated. The maximum diffusive flux into the sediment due to volcanic matter alteration can be no more than 5% of the combined inputs from rivers and submarine hydrothermal solutions. Adsorption on to sediments can only account for 5-10% of the total inputs from rivers and submarine hot springs.
Resumo:
The aim of this paper is to analyze and compare mineralogy and geochemistry of copper-zinc sulfide ores from the Logachev-2 and Rainbow hydrothermal fields of the Mid-Atlantic Ridge (MAR) confined to serpentinite protrusions. It was found that Zn(Fe) and Cu, Fe(Zn) sulfides had been deposited in black smokers pipes almost simultaneously from intermittently flowing, nonequilibrium H2S-low solutions of different temperatures. Pb isotope composition confirmed that the deep oceanic crust had been a source of lead. The ores from the Rainbow field are 20-fold higher in Co than ores restricted to basalts and show a high ratio of Co/Ni=46. The ores from the Rainbow field are enriched in 34S isotope (aver. d34S=10 per mil) because of constant flow of cold sea water into the subsurface zone of the hydrothermal system. Ores from the Logachev-2 field are 8 times higher in gold compared to other MAR regions. Sulfide ores from the Rainbow and Logachev-2 fields have no analogues among MAR ore occurrences in terms of enrichment in valuable components (Zn, Cd, Co, and Au).
Resumo:
Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in the Palenyi Island within the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10-11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineral and chemical composition. Closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to values obtained with mineralogical geothermometers (garnet-orthopyroxene and garnet-biotite) and correspond to the high-temperature granulite facies (860-900°C). Identified systematic variations in d18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in d18O cannot be explained by primary isotopic heterogeneity of the protolith. Model calculations of the extent and trend of d18O variations in minerals suggest that fluid-rock interaction at various integral fluid/rock ratios in discrete zones was the only mechanism that could generate the zoning. This demonstrates that focused fluid flux could occur in lower crustal shear zones. Preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.
Resumo:
Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.
Resumo:
Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.