240 resultados para Maureen Elgersman Leee
Resumo:
Paired Mg/Ca and d18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of d18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis = G. bulloides > G. ruber = G. sacculifer = other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The 9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.
Resumo:
Intraspecific differences in the diets of many species of pinnipeds are to be expected in view of the great differences in morphology, life history and foraging behaviour between the sexes of many species. We examined the diet of the Antarctic fur seal population at Bouvetøya, Southern Ocean, to assess intersexual differences. This was made possible by the analysis of prey remains extracted from scats and regurgitations collected in areas used primarily by one or the other sex. The results indicate that both males and females feed primarily on Antarctic krill Euphausia superba with several species of fish and squid being taken, likely opportunistically given their prevalence. Significant differences were identified in the frequency of occurrence of otoliths in scats and the percentage numerical abundance of the major fish prey species in the diet. Adult males ate a smaller quantity of fish overall, but ate significantly more of the larger fish species. The greater diving capabilities of males and the fact that they are not limited in the extent of their foraging area by having to return regularly to feed dependant offspring may play a role in the differences found between the diets of males and females. Additionally, females might be more selective, favouring myctophids because they are richer in energy than krill. The absence of major differences in the diet between the sexes at this location is likely due to the high overall abundance of prey at Bouvetøya.
(Table 4) Rates of seropositivity for Toxoplasma gondii antibodies in marine mammals by age category