679 resultados para Mass spectrometer
Resumo:
Southern Ocean biogeochemical processes have an impact on global marine primary production and global elemental cycling, e.g. by likely controlling glacial-interglacial pCO2 variation. In this context, the natural silicon isotopic composition (d30Si) of sedimentary biogenic silica has been used to reconstruct past Si-consumption:supply ratios in the surface waters. We present a new dataset in the Southern Ocean from a IPY-GEOTRACES transect (Bonus-GoodHope) which includes for the first time summer d30Si signatures of suspended biogenic silica (i) for the whole water column at three stations and (ii) in the mixed layer at seven stations from the subtropical zone up to the Weddell Gyre. In general, the isotopic composition of biogenic opal exported to depth was comparable to the opal leaving the mixed layer and did not seem to be affected by any diagenetic processes during settling, even if an effect of biogenic silica dissolution cannot be ruled out in the northern part of the Weddell Gyre. We develop a mechanistic understanding of the processes involved in the modern Si-isotopic balance, by implementing a mixed layer model. We observe that the accumulated biogenic silica (sensu Rayleigh distillation) should satisfactorily describe the d30Si composition of biogenic silica exported out of the mixed layer, within the limit of the current analytical precision on the d30Si. The failures of previous models (Rayleigh and steady state) become apparent especially at the end of the productive period in the mixed layer, when biogenic silica production and export are low. This results from (1) a higher biogenic silica dissolution:production ratio imposing a lower net fractionation factor and (2) a higher Si-supply:Si-uptake ratio supplying light Si-isotopes into the mixed layer. The latter effect is especially expressed when the summer mixed layer becomes strongly Si-depleted, together with a large vertical silicic acid gradient, e.g. in the Polar Front Zone and at the Polar Front.
Resumo:
Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, d13C values of acetate span a wide range from -46.0 per mill to -11.0 per mill vs. VPDB and change systematically with sediment depth. In contrast, d13C values of both the bulk dissolved organic carbon (DOC) (-21.6 ± 1.3 per mill vs. VPDB) and the low-molecular-weight compound lactate (-20.9 ± 1.8 per mill vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1 per mill depleted and up to 9.1 per mill enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.
Resumo:
The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.
Resumo:
Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.
Resumo:
Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. (1990) from ODP site 677 in the equatorial Pacific differs significantly from previous ones (e.g. Kominz and Pisias, 1979 doi:10.1126/science.204.4389.171; Morley and Hays, 1981 doi:10.1016/0012-821X(81)90034-0, Imbrie et al. 1984), yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values (Mankinen and Dalrymple, 1979 doi:10.1029/JB084iB02p00615; Berggren et al., 1985; Harland and Armstrong, 1989) but are in good agreement with recent Ar/Ar dating (Baksi et al., 1991; 1992 doi:10.1126/science.256.5055.356; Spell and McDougall, 1992 doi:10.1029/92GL01125). These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in delta18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal (Rostek et al., 1993 doi:10.1038/364319a0). Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the SPECMAP composite curves (Imbrie et al., 1984; Prell et al., 1986 doi:10.1029/PA001i002p00137), and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. (1990). The precession peaks found in the delta18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our delta18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 +/- 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. (1990) and recent radiochronological Ar/Ar datings on lavas (Baksi et al., 1991; 1992; Spell and McDougall, 1992). We developed a new low-latitude, Upper Pleistocene delta18O reference record by stacking and tuning the delta18O records from core MD900963 and site 677 to orbital forcing functions.
Resumo:
Sixteen elemental abundances and 87Sr/86Sr ratio of the Nauru Basin basalt (Cores 75 to 90: sub-bottom depths 950 m to 1050 m) from Hole 462A have been determined by inductively coupled plasma-optical emission spectroscopy and mass spectrometry. The result indicates that the basalt is a new type of oceanic tholeiite, elementally similar to normal mid-oceanic ridge basalts and isotopically similar to oceanic island-type basalts.