118 resultados para Margaret, of Austria, Regent of the Netherlands, 1480-1530.
Resumo:
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.
Resumo:
Samples from a pristine raised peat bog runoff in Austria, the Tannermoor creek, were analysed for their iron linked to natural organic matter (NOM) content. Dissolved organic carbon < 0.45 µm (DOC) was 41 to 64 mg/L, iron 4.4 to 5.5 mg/L. Samples were analysed applying asymmetric field flow fractionation (AsFlFFF) coupled to UV-Vis absorption, fluorescence and inductively coupled plasma mass spectrometry (ICP-MS). The samples showed an iron peak associated with the NOM peak, one sample exhibiting a second peak of iron independent from the NOM peak. As highland peat bogs with similar climatic conditions and vegetation to the Tanner Moor are found throughout the world, including areas adjacent to the sea, we examined the behaviour of NOM and iron in samples brought to euhaline (35 per mil) conditions with artificial sea salt. The enhanced ionic strength reduced NOM by 53% and iron by 82%. Size exclusion chromatography (SEC) of the samples at sea-like salinity revealed two major fractions of NOM associated with different iron concentrations. The larger one, eluting sharply after the upper exclusion limits of 4000-5000 g/mol, seems to be most important for iron chelating. The results outline the global importance of sub-mountainous and mountainous raised peat bogs as a source of iron chelators to the marine environment at sites where such peat bogs release their run-offs into the sea.
Resumo:
The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.
Resumo:
The chemical analyses of ferromanganese encrustations found on the seabed west of Misool, eastern Indonesia, indicate that these deposits formed in a way different from that of world-wide occurring manganese nodules. Ferromanganese coated pebbles and fragments that were found in the deeper parts of the study area probably originate from nearby ridges. The ferromanganese crust on the upper part of a dolomite fragment of ?30 kg is likely to be formed by hydrogenous processes, whereas that from the lower part seems to be formed by diagenetic processes mainly. These assumptions are supported by pore-water data from two box cores taken in the same area. The manganese and iron profiles versus depth in these cores indicate a high flux of these metals to the uppermost sediment layer, and possibly into the overlying bottom water. Factor analysis for the principal components of the microprobe analytical results of the mainly hydrogenous ferromanganese crust demonstrates a strong correlation of manganese with the trace metals, of iron with phosphorus and an antipathetic relationship between iron and manganese. Similar results have also been reported for abyssal manganese nodules in the world oceans. Factor analysis for the principal components of the analytical data obtained for the diagenetic ferromanganese crust results in a clear dolomite (Ca/Mg) dilution factor only.
Resumo:
Bedforms such as dunes and ripples are ubiquitous in rivers and coastal seas, and commonly described as triangular shapes from which height and length are calculated to estimate hydrodynamic and sediment dynamic parameters. Natural bedforms, however, present a far more complicated morphology; the difference between natural bedform shape and the often assumed triangular shape is usually neglected, and how this may affect the flow is unknown. This study investigates the shapes of natural bedforms and how they influence flow and shear stress, based on four datasets extracted from earlier studies on two rivers (the Rio Paraná in Argentina, and the Lower Rhine in The Netherlands). The most commonly occurring morphological elements are a sinusoidal stoss side made of one segment and a lee side made of two segments, a gently sloping upper lee side and a relatively steep (6 to 21°) slip face. A non-hydrostatic numerical model, set up using Delft3D, served to simulate the flow over fixed bedforms with various morphologies derived from the identified morphological elements. Both shear stress and turbulence increase with increasing slip face angle and are only marginally affected by the dimensions and positions of the upper and lower lee side. The average slip face angle determined from the bed profiles is 14°, over which there is no permanent flow separation. Shear stress and turbulence above natural bedforms are higher than above a flat bed but much lower than over the often assumed 30° lee side angle.
Resumo:
Shipboard whole-core squeezing was used to measure pore water concentration vs depth profiles of [NO3]-, O2 and SiO2 at 12 stations in the equatorial Pacific along a transect from 15°S to 11°N at 135°W. The [NO3]- and SiO2 profiles were combined with fine-scale resistivity and porosity measurements to calculate benthic fluxes. After using O2 profiles, coupled with the [NO3]- profiles, to constrain the C:N of the degrading organic matter, the [NO3]- fluxes were converted to benthic organic carbon degradation rates. The range in benthic organic carbon degradation rates is 7-30 ?mol cm**-2 y**-1, with maximum values at the equator and minimum values at the southern end of the transect. The zonal trend of benthic degradation rates, with its equatorial maximum and with elevated values skewed to the north of the equator, is similar to the pattern of primary production observed in the region. Benthic organic carbon degradation is 1-2% of primary production. The range of benthic biogenic silica dissolution rates is 6.9-20 µmol cm**-2 y**-1, representing 2.5-5% of silicon fixation in the surface ocean of the region. Its zonal pattern is distinctly different from that of organic carbon degradation: the range in the ratio of silica dissolution to carbon degradation along the transect is 0.44-1.7 mol Si mol C**-1, with maximum values occurring between 12°S and 2°S, and with fairly constant values of 0.5-0.7 north of the equator. A box model calculation of the average lifetime of the organic carbon in the upper 1 cm of the sediments, where 80 +/- 11% of benthic organic carbon degradation occurs, indicates that it is short: from 3.1 years at high flux stations to 11 years at low flux stations. The reactive component of the organic matter must have a shorter lifetime than this average value. In contrast, the average lifetime of biogenic silica in the upper centimeter of these sediments is 55 +/- 28 years, and shows no systematic variations with benthic flux.
Resumo:
Various manganese nodules donated to the Scripps Institution of Oceanography from the Hakurei Maru Cruise GH77-1, January-March, 1977, in the Central Pacific Basin have been analysed for their lithium content by J. Korkish from the Institute of Analytical Chemistry, Analysis of Nuclear Raw Materials Division, University of Vienna, Austria. The author has used a Perkin-Elmer atomic-absorption spectrometer 303 after speration by dissolution in hydrochloric acid.
Resumo:
One hundred surface sediment samples of the Arabian Sea (Indian Ocean) were investigated and relative abundances of coccoliths were compared to mean annual gradients of temperature, salinity, chlorophyll, PO4 and mixed layer depth. Total coccolith concentrations ranged from 42*10**6/g sediment in coastal areas to more than 19000*10**6/g sediment in oceanic regions. The general distribution does not seem to be dependent on coccolithophore productivity in surface waters alone, but also on the diluting input of terrigenous material. A total of 27 taxa were identified. The main species dominating the assemblages were Gephyrocapsa oceanica, Emiliania huxleyi and Florisphaera profunda with a combined average abundance of more than 70%. Several species and species groups reflect with their distribution the environmental parameters of the overlying water masses and may be successfully used to improve palaeoclimatic reconstructions, e.g. (a) F. profunda exhibits a high similarity or even positive correlation to the mean annual mixed layer depth, (b) calciosolenids can be described as coastal or shelf species. While temperature and salinity gradients do not seem to be crucial for coccolithophores in this region, the mean mixed layer depth as well as the PO4 concentration (representative for total nutrient availability) may control in part the coccolithophore assemblages. According to the results of a cluster analysis and the distribution pattern of all species, it was possible to differentiate three main coccolithophore assemblages. A G. oceanica dominated assemblage mainly occurs in the northern part of the study area and can be described as 'high nutrient assemblage'. The second assemblage, dominated by F. profunda, may be typical for oligotrophic and stable conditions in open ocean waters. A third assemblage, with high amounts of 'coastal species', characterises coastal conditions on the shelves.
Resumo:
In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere-land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the d18O in precipitation also shows variations from -4 permil up to 4 permil. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the d18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for d18O by up to +8 permil:, the simulated d18O in precipitation shows only slight differences on the order of ±1 permil. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.