828 resultados para Isotope stable


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-resolution sediment records from the South China Sea reveal a winter monsoon dominated glacial regime and a summer monsoon dominated Holocene regime during the last glacial cycle. A fundamental change between regimes occurred during deglaciation through a series of millennial reoccurrences of century-scale changes in the East Asian monsoon (EAM) climate. These abrupt events centered at 17.0, 15.9, 15.5, 14.7, 13.5, 13.9, 13.3, 12.1, 11.5, and 10.7 14C ka correlate well with the millennial-scale events in the Santa Barbara Basin and the Arabian Sea, i.e. a relationship between EAM and El Niño/Southern Oscillation systems. The abrupt increases in summer monsoon imply enhanced heat transport from low-latitude sea area to the midlatitude/high-latitude land area. The phase relationship between events of EAM and ice sheet may reflect a faster EAM response and a slower ice sheet response to the insolation change. A far-reaching conclusion is that the EAM might have triggered the Northern Hemisphere deglaciation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The western South Atlantic boundary currents represent a sensitive system within the global thermohaline circulation (THC). We investigated the impact of deglacial THC changes on the western tropical Atlantic studied in six high resolution sediment cores from the upper continental slope of Brazil. The stratigraphy of the cores is mainly based on 14C AMS dating of monospecific foraminiferal samples. Changes in the upper layer tropical ocean during the deglaciation are inferred from stable oxygen isotope measurements on planktic and benthic foraminifera. Variations in the delta18O residuals are assumed to be mainly temperature related. During the Oldest and Younger Dryas cooling periods, two major deglacial THC disturbances are reported from North Atlantic sediment cores. Concomitant to the repeated THC slowdown, we observe an upper layer warming in the tropical ocean. A reduced northward heat export from the tropical areas during these periods (weak North Brazil Current) is additionally reflected by low meridional gradients in the stable oxygen records. This generally agrees with results from coupled ocean atmosphere models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ever since its discovery, Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) has been considered as one of the "little brothers" of the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) as it displays similar characteristics including abrupt warming, ocean acidification, and biotic shifts. One of the remaining key questions is what effect these lesser climate perturbations had on ocean circulation and ventilation and, ultimately, biotic disruptions. Here we characterize ETM2 sections of the NE Atlantic (Deep Sea Drilling Project Sites 401 and 550) using multispecies benthic foraminiferal stable isotopes, grain size analysis, XRF core scanning, and carbonate content. The magnitude of the carbon isotope excursion (0.85-1.10 per mil) and bottom water warming (2-2.5°C) during ETM2 seems slightly smaller than in South Atlantic records. The comparison of the lateral d13C gradient between the North and South Atlantic reveals that a transient circulation switch took place during ETM2, a similar pattern as observed for the PETM. New grain size and published faunal data support this hypothesis by indicating a reduction in deepwater current velocity. Following ETM2, we record a distinct intensification of bottom water currents influencing Atlantic carbonate accumulation and biotic communities, while a dramatic and persistent clay reduction hints at a weakening of the regional hydrological cycle. Our findings highlight the similarities and differences between the PETM and ETM2. Moreover, the heterogeneity of hyperthermal expression emphasizes the need to specifically characterize each hyperthermal event and its background conditions to minimalize artifacts in global climate and carbonate burial models for the early Paleogene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We determined d18OCib values of live (Rose Bengal stained) and dead epibenthic foraminifera Cibicidoides wuellerstorfi, Cibicides lobatulus, and Cibicides refulgens in surface sediment samples from the Arctic Ocean and the Greenland, Iceland, and Norwegian seas (Nordic Sea). This is the first time that a comprehensive d18OCib data set is generated and compiled from the Arctic Ocean. For comparison, we defined Atlantic Water (AW), upper Arctic Bottom Water (uABW), and Arctic Bottom Water (ABW) by their temperature/salinity characteristics and calculated mean equilibrium calcite d18Oequ from summer sea-water d18Ow and in situ temperatures. As a result, in the Arctic environment we compensate for Cibicidoides- and Cibicides-specific offsets from equilibrium calcite of -0.35 and -0.55 per mil, respectively. After this taxon-specific adjustment, mean d18OCib values plausibly reflect the density stratification of principle water masses in the Nordic Sea and Arctic Ocean. In addition, mean d18OCib from AW not only significantly differs from mean d18OCib from ABW, but also d18OCib from within AW differentiates in function of provenience and water mass age. Furthermore, in shallow waters brine-derived low d18Ow can significantly lower the d18OCib of Cibicides spp. and thus d18OCib may serve as a paleobrine indicator. There is no statistically significant difference, however, between deeper water masses mean d18OCib of the Nordic Sea, and of the Eurasian and Amerasian basins, and no influence of low-d18Ow brines is recorded in Recent uABW and ABW d18OCib of C. wuellerstorfi. This may be due to dilution of a low-d18Ow brine signal in the deep sea, and/or to preferential incorporation of relatively high-d18Ow brines from high-salinity shelves. Although our data encompass environments with seasonal sea-ice and brine formation supposed to ultimately ventilate the deep Arctic Ocean, d18OCib from uABW and ABW do not indicate negative excursions. This may challenge hypotheses that call for enhanced Arctic brine release to explain negative benthic d18O spikes in deep-sea sediments from the late Pleistocene North Atlantic Ocean.