112 resultados para Indo-Fijian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foraminiferal analysis of Miocene to recent strata of the Northwest Shelf of Australia is used to chart West Pacific Warm Pool (WPWP) influence. The assemblage is typified by "larger" foraminifera with ingressions of the Indo-Pacific "smaller" taxa Asterorotalia and Pseudorotalia at around 4 Ma and from 1.6 to 0.8 Ma. A review of recent and fossil biogeography of these taxa suggests their stratigraphic distribution can be used to document WPWP evolution. From 10 to 4.4 Ma a lack of biogeographic connectivity between the Pacific and Indian Ocean suggests Indonesian Throughflow (ITF) restriction. During this period, the collision of Australia and Asia trapped warmer waters in the Pacific, creating a central WPWP biogeographic province from the equator to 26°N. By 3 Ma Indo-Pacific species migrated to Japan with the initiation of the "modern" Kuroshio Current coinciding with the intensification of the North Pacific Gyre and Northern Hemisphere ice sheet expansion. Indo-Pacific taxa migrated to the northwest Australia from 4.4 to 4 Ma possibly because of limited ITF. The absence of Indo-Pacific taxa in northwest Australia indicates possible ITF restriction from 4 to 1.6 Ma. Full northwest Australian biogeographic connectivity with the WPWP from 1.6 to 0.8 Ma suggests an unrestricted stronger ITF (compared to today) and the initiation of the modern Leeuwin Current. The extinction of some Indo-Pacific species in northwest Australia after 0.8 Ma may be related to the effects of large glacial/interglacial oscillations and uplift of the Indonesian Archipelago causing Indonesian seaway restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses show that the biserial forarniniferal genus Streptochilus, which was originally described from pelagic sediments on the Eauripik Rise and Ontong Java Plateau, lived deep in the upper water column within the oxygen minimum layer. The species of Streptochilus average from 4 to 19% of the foraminiferal assemblages in which benthic forms compose less than 1 or 2%. Specimens of Streptochilus are selectively dissolved when in contact with the bottom water mass. Their rapid evolutionary turnover of less than a few million years and their wide areal distribution in the equatorial Indo-Pacific are indicative of planktonic foraminifera. Aside from usefulness of the species of Streptochilus as stratigraphic indices, these Neogene biserial planktonic foraminifera are potential indices of paleoceanographic stratification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon isotopic signatures (d30Si) of water column silicic acid (Si(OH)4) were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC). d30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the d30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW d30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the d30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Through the use of d30Si constraints, net biogenic silica production (representative of annual export), at the Greenwich Meridian is estimated to be 5.2 ± 1.3 and 1.1 ± 0.3 mol Si/m**2 for the Antarctic Zone and Polar Front Zone, respectively. This is in good agreement with previous estimations. Furthermore, summertime Si-supply into the mixed layer of both zones, via vertical mixing, is estimated to be 1.6 ± 0.4 and 0.1 ± 0.5 mol Si/m**2, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high-latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotopes and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.