319 resultados para Halocarbons, rainforest, phytoplankton bloom, methyl chloride, methyl bromide, methyl iodide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n?7), 16:4(n?3) and 20:5(n?3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n?3), 16:0, 18:2(n?6) and 18:1(n?9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n?9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n?9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (>50 m) as compared to surface (0-50 m) dwelling individuals related to a descent prior to overwintering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study site was located in the Disko Bay off Qeqertarsuaq, western Greenland. Due to land-connected sea ice coverage during winter, 2 sampling sites were combined. At the first site in winter (21 February to 23 March 2008), sampling was conducted through a hole in the ice at ca. 65 to 160 m depth approximately 0.5 nautical mile (n mile) south of Qeqertarsuaq (69° 14' N, 53° 29' W). In spring and summer (9 April to 18 July), sampling was done at a monitoring station 1 n mile south from Qeqertarsuaq (69° 14' N, 53° 23' W) at 300 m depth. Sampling was carried out between 10:00 and 17:00 h. During sampling from the ice, mesozooplankton was collected using a modified WP-2 net (45 µm) equipped with a closing mechanism (Hydrobios). Samples were collected in 3 depth strata (0-50, 50-100, and 100-150 m). During ship-based sampling, mesozooplankton was collected with a multinet (50 µm) equipped with a flow meter (Multinet, Hydrobios type midi), and 2 additional depth strata (150-200m and 200-250 m) were included. In addition to the seasonal study one diurnal investigation with sampling every 6 h was conducted from 29 April at 12:00 h to 30 April 30 at 12:00 h. Samples were immediately preserved in buffered formalin (5% final concentration) for later analyses. Biomass values of the different copepod species were calculated based on measurements of prosome length, and length/weight relationships. Two regressions for Calanus spp. were established for biomass calculations: one applicable prior to and during the phytoplankton bloom until 4 May, and another from 9 May onwards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton biomass distribution (chlorophyll a, chl. a) and species composition (cell numbers) were investigated during three expeditions to the Kara Sea with "Akademik Boris Petrov" (BP) in 1997, 1999, and 2000. The distribution of biomass in the estuaries of Ob and Yenisei showed a similar range in 1997 (0.2 to 3.2 µg/l) and 2000 (0.4 to 3.5 ug/l); higher chl. a concentrations during these two years were found in Yenisei than in Ob. In 1999, phytoplankton biomass in the Ob and Ob Estuary was much higher than in 1997 and 2000, with maximum values above 10.0 ug chl. a/l. In 1999, biomass in Yenisei was lower (1.5 to ~5 ug/l) than in Ob but slightly higher than in 1997 and in 2000. During the expedition in 2000, the research area extended farther to the north, here, lowest phytoplankton biomass during all three years was found. Typical summer values for integrated chl.a biomass (surface to bottom) ranged between 6 and 20 mg m**-2. Strong differences existed in species composition in both rivers, the estuaries, and the open Kara Sea. In general, three or four different populations could be distinguished in surface waters: (1) freshwater diatoms together with bluegreen algae in both rivers, (2) centric and small pennate diatoms mainly brackish species in the estuaries, (3) north of 74°N, brackish/marine species dominated, i.e. in 1999 Thalassiosira cfpunctigera and Chaetoceros spp prevailed in the phytoplankton bloom in Ob. (4) At the northernmost, almost marine stations, a region with a more heterogeneous composition of unicellular plankton was encountered. We assume, we found different seasonal signals of phytoplankton development during 1997/2000 and 1999, respectively. However, the yearly fluctuation of freshwater runoff of both rivers seems to have the strongest influence on the timing and duration of phytoplankton blooms, species compositions and biomass standing stocks during summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spring bloom of cold-water centric and pennate diatoms was observed in two different areas of the southeastern Barents Sea in April 2000: ice-free waters off the Kolguev Island northern shelf and the eastern Pechora Sea near the Karskie Vorota (Kara Gate) Straight in polynyas and ice-free patches in one-year-old ice. Maximal values of phytoplankton abundance and biomass were found at the ice edge. The bloom was localized in shallow water areas with depths less than 50 m in mixing zones of waters of different origin: warm Atlantic, cold coastal, and Arctic (Litke current) waters. Ice melting was among factors inducing the phytoplankton bloom. Each area had a specific phytocoenosis, whose structure was determined by water origin and ice conditions. In the western Kara Sea, under a solid (up to 30 cm thick) ice cover (i.e., under conditions of a hydrological winter), a spring phytoplankton succession was observed from its initial stage. In areas located close to the ice-cover edge, simultaneously with the mass phytoplankton bloom, the early spring zoocoenosis development manifested itself in mass spawning of euphausiids and mass appearance of Cirripedia nauplii and bottom polychaete larvae.