157 resultados para HARD MAGNETIC-PROPERTIES
Resumo:
We present detailed paleomagnetic and rock magnetic results of rock samples recovered during Leg 173. The Leg 173 cores display a multicomponent magnetization nature. Variations in magnetic properties correlate with changes in lithology that result from differences in the abundance and size of magnetic minerals. The combined investigation suggests that the magnetic properties of the "fresher" peridotite samples from Site 1070 are controlled mainly by titanomagnetite, with a strong Verwey transition in the vicinity of 110 K, and with field- and frequency-dependent susceptibility curves that resemble those of titanomagnetites. These results are in excellent agreement with thermomagnetic characteristics where titanomagnetites with Curie temperature ~580°C were identified from the "fresher" peridotites. In contrast to the magnetic properties observed from the "fresher" peridotites, the low-temperature curves for the "altered" peridotites did not show any Verwey transition. Thermomagnetic analysis using the high-temperature vibrating sample magnetometer also failed to show evidence for titanomagnetites. The remanent magnetization is carried by a thermally unstable mineral that breaks down at ~420°C, probably maghemite. The field- and frequency-dependent relationships are also directly opposite to those in the reversal zone, with no signs of titanomagnetite characteristics. Altogether, these rock magnetic data seem to be sensitive indicators of alteration and support the contention that maghemite is responsible for the magnetic signatures displayed in the altered peridotites of the upper section. The magnetic minerals of the basement rocks from Sites 1068, 1069, and 1070 are of variable particle size but fall within the pseudo-single-domain size range (0.2-14 µm). The average natural remanent magnetization (NRM) intensity of recovered serpenitinized peridotite is typically on the order of 20 mA/m for samples from Site 1068, but ~120 mA/m for samples from Site 1070. The much stronger magnetization intensity of Site 1070 is apparently in excellent agreement with the observed magnetic anomaly high. Nearly half of the NRM intensity remained after 400°C demagnetization, suggesting that the remanence can contribute significantly to the marine magnetic anomaly.
Resumo:
Measurements of natural remanent magnetization (NRM), initial susceptibility (K), anisotropy of magnetic susceptibility, frequency dependent susceptibility (Xfd), and viscous remanent magnetization (VRM) are reported from volcanic rocks recovered during ODP Leg 127 in the Japan Sea. The results indicate a significant difference between the basalts drilled in the Yamato Basin (Site 794 and 797) and in the Japan Basin (Site 795). The Koenigsberger ratios (Q) show very low values in the Yamato Basin attesting that the remanence is not dominant over the induced magnetization. This evidence could explain why no magnetic anomaly pattern has been recognized in this basin. Experiments of VRM acquisition and decay show that both the processes are multistage with the acquisition process proceeding more rapidly and deviates more from a log (t) law than the corresponding decay. The sediments interlayered with the basalts in the acoustic basement of the Yamato Basin show processes of remagnetization related to the emplacement of the dikes. Temperatures of heating between 200° and 250°C were estimated from the different unblocking temperatures of the two components of magnetization.
Resumo:
During Leg 134, the influence of ridge collision and subduction on the structural evolution of island arcs was investigated by drilling at a series of sites in the collision zone between the d'Entrecasteaux Zone (DEZ) and the central New Hebrides Island Arc. The DEZ is an arcuate Eocene-Oligocene submarine volcanic chain that extends from the northern New Caledonia Ridge to the New Hebrides Trench. High magnetic susceptibilities and intensities of magnetic remanence were measured in volcanic silts, sands, siltstones, and sandstones from collision zone sites. This chapter presents the preliminary results of studies of magnetic mineralogy, magnetic properties, and magnetic fabric of sediments and rocks from Sites 827 through 830 in the collision zone. The dominant carrier of remanence in the highly magnetic sediments and sedimentary rocks in the DEZ is low-titanium titanomagnetite of variable particle size. Changes in rock magnetic properties reflect variations in the abundance and size of titanomagnetite particles, which result from differences in volcanogenic contribution and the presence or absence of graded beds. Although the anisotropy of magnetic susceptibility results are difficult to interpret in terms of regional stresses because the cores were azimuthally unoriented, the shapes of the susceptibility ellipsoids provide information about deformation style. The magnetic fabric of most samples is oblate, dominated by foliation, as is the structural fabric. The variability of degree of anisotropy (P) and a factor that measures the shape of the ellipsoid (q) reflect the patchy nature of deformation, at a micrometer scale, that is elucidated by scanning electron microscope analysis. The nature of this patchiness implies that deformation in the shear zones is accomplished primarily by motion along bedding planes, whereas the material within the beds themselves remains relatively undeformed.
Resumo:
During DSDP Leg 65, we achieved significant basement penetration at three sites (482, 483, and 485) in the mouth of the Gulf of California (Lewis and Robinson, 1983, doi:10.2973/dsdp.proc.65.1983). Since these holes were all drilled into extremely young crust near the crest of the East Pacific Rise, the rocks we recovered present an unusual opportunity to study the magnetic properties of submarine basalts before alteration has become pervasive. To take advantage of this opportunity and to complement the paleomagnetic studies conducted on these basalts by Day (1983, doi:10.2973/dsdp.proc.65.138.1983), we have studied, in the same samples, the following properties: saturation magnetization (Js); intensity and stability of isothermal remanent magnetization (IRM); hysteresis parameters, such as the coercive force (Hc), the remanent coercive force (HRC), and the ratio of saturation remanence (JRS) to saturation magnetization; susceptibility (x); and Curie temperature (Tc). In this chapter we will discuss the results of these studies in conjunction with the opaque mineralogy of the samples.
Resumo:
Foulden Maar is a highly resolved maar lake deposit from the South Island of New Zealand comprising laminated diatomite punctuated by numerous diatomaceous turbidites. Basaltic clasts found in debris flow deposits at the base of the cored sedimentary sequence yielded two new 40Ar/39Ar dates of 24.51±0.24 Ma and 23.38±0.24 Ma (2sigma). The younger date agrees within error with a previously published 40Ar/39Ar date of 23.17±0.19 Ma from a basaltic dyke adjacent to the maar crater. The diatomite is inferred to have been deposited over several tens of thousands of years in the latest Oligocene/earliest Miocene, and may have overlapped with the period of rapid glaciation and subsequent deglaciation of Antarctica known as the Mi-1 event. Sediment magnetic properties and SEM measurements indicate that the magnetic signal is dominated by pseudo-single domain pyrrhotite. The most likely source of detrital pyrrhotite is schist country rock fragments from the inferred tephra ring created by the phreatomagmatic eruption that formed the maar. Variations in magnetic concentration and lamina thickness indicate a decrease in erosional input and increase in diatom productivity throughout the depositional period, suggesting a long-term (tens of thousands of years) climatic change in New Zealand in the latest Oligocene/earliest Miocene.
Resumo:
Hysteresis measurements have been carried out on a suite of ocean-floor basalts with ages ranging from Quaternary to Cretaceous. Approximately linear, yet separate, relationships between coercivity (Bc) and the ratio of saturation remanence/saturation magnetization (Mrs/Ms) are observed for massive doleritic basalts with low-Ti magnetite and for pillow basalts with multi-domain titanomagnetites (with x= 0.6). Even when the MORB has undergone lowtemperature oxidation resulting in titanomaghemite, the parameters are still distinguishable, although offset from the trend for unoxidized multidomain titanomagnetite. The parameters for these iron oxides with different titanium content reveal contrasting trends that can be explained by the different saturation magnetizations of the mineral types. This plot provides a previously underutilized and non-destructive method to detect the presence of low-titanium magnetite in igneous rocks, notably MORB.
Resumo:
Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.
Resumo:
Carbonate sediments from the Kerguelen Plateau (ODP Leg 120) of Eocene to Pliocene age were investigated with rock magnetic, petrographic and geochemical methods to determine the carriers of remanent magnetization. Magnetic methods showed that the major magnetic minerals were titanomagnetites slightly larger than single domain particles. Submicrometre to micrometre-size grains of titanomagnetite were identified as inclusions in volcanic glass particles or as crystals in lithic clasts. Volcanic fallout ash particles formed the major fraction of the magnetic extract from each sediment sample. Three groups of volcanic ashes were identified: trachytic ashes, basaltic ashes with sideromelane and tachylite shards, and palagonitic ashes. These three groups could be equally well defined based on their magnetic hysteresis properties and alternating field demagnetization curves. The highest coercivities of all samples were found for the tachylite, due to the submicrometre-size titanomagnetite inclusions in the matrix. Trachytic ashes had intermediate magnetic properties between the single-domain-type tachylites and the palagonitic (altered) basaltic ashes with low coercivities. Samples which contained mixtures of these different volcanic ashes could be distinguished from the three types of ashes based on their magnetic characteristics. There was neither evidence of biogenic magnetofossils in the transmission electron micrographs nor did we find magnetic particles derived from continental Antarctica. The presence of dispersed volcanic fallout ashes between visible ash layers suggests continuous explosive volcanic activity on the Kerguelen Plateau in the South Indian Ocean since the early Eocene. The continuous fallout of volcanic ash from explosive volcanism on the Kerguelen Archipelago is the source of the magnetic particles and thus responsible for the magnetostratigraphy of the nannofossil oozes drilled during Leg 120.
Resumo:
Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.