223 resultados para Furuhjelm, Johan Hampus
Resumo:
The present data set provides a tab separated text file compressed in a zip archive. The file includes metadata for each TaraOceans V9 rDNA OTU including the following fields: md5sum = identifier of the representative (most abundant) sequence of the swarm; cid = identifier of the OTU; totab = total abundance of barcodes in this OTU; TARA_xxx = number of occurrences of barcodes in this OTU in each of the 334 samples;rtotab = total abundance of the representative barcode; pid = percentage identity of the representative barcode to the closest reference sequence from V9_PR2; lineage = taxonomic path assigned to the representative barcode ; refs = best hit reference sequence(s) with respect to the representative barcode ; taxogroup = high-taxonomic level assignation of the representative barcode. The file also includes three categories of functional annotations: (1) Chloroplast: yes, presence of permanent chloroplast; no, absence of permanent chloroplast ; NA, undetermined. (2) Symbiont (small partner): parasite, the species is a parasite; commensal, the species is a commensal; mutualist, the species is a mutualist symbiont, most often a microalgal taxon involved in photosymbiosis; no the species is not involved in a symbiosis as small partner; NA, undetermined. (3) Symbiont (host): photo, the host species relies on a mutualistic microalgal photosymbiont to survive (obligatory photosymbiosis); photo_falc, same as photo, but facultative relationship; photo_klep, the host species maintains chloroplasts from microalgal prey(s) to survive; photo_klep_falc, same as photo_klep, but facultative; Nfix, the host species must interact with a mutualistic symbiont providing N2 fixation to survive; Nfix_falc, same as Nfix, but facultative; no, the species is not involved in any mutualistic symbioses; NA, undetermined.
Resumo:
The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.
Resumo:
Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (d15N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 µg/g wet wt), while Tessisoak Lake (Labrador, 0.07 µg/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, d15N, and age, respectively, in 88,71, and 58% of 24 char populations. Length and d15N were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds.
Resumo:
It is well known that ocean acidification can have profound impacts on marine organisms. However, we know little about the direct and indirect effects of ocean acidification and also how these effects interact with other features of environmental change such as warming and declining consumer pressure. In this study, we tested whether the presence of consumers (invertebrate mesograzers) influenced the interactive effects of ocean acidification and warming on benthic microalgae in a seagrass community mesocosm experiment. Net effects of acidification and warming on benthic microalgal biomass and production, as assessed by analysis of variance, were relatively weak regardless of grazer presence. However, partitioning these net effects into direct and indirect effects using structural equation modeling revealed several strong relationships. In the absence of grazers, benthic microalgae were negatively and indirectly affected by sediment-associated microalgal grazers and macroalgal shading, but directly and positively affected by acidification and warming. Combining indirect and direct effects yielded no or weak net effects. In the presence of grazers, almost all direct and indirect climate effects were nonsignificant. Our analyses highlight that (i) indirect effects of climate change may be at least as strong as direct effects, (ii) grazers are crucial in mediating these effects, and (iii) effects of ocean acidification may be apparent only through indirect effects and in combination with other variables (e.g., warming). These findings highlight the importance of experimental designs and statistical analyses that allow us to separate and quantify the direct and indirect effects of multiple climate variables on natural communities.
Resumo:
In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.
Resumo:
The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.