316 resultados para Fluorine.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the eastern flank of the Juan de Fuca Ridge, reaction between upwelling basement fluid and sediment alters hydrothermal fluxes of Ca, SiO2(aq), SO4, PO4, NH4, and alkalinity. We used the Global Implicit Multicomponent Reactive Transport (GIMRT) code to model the processes occurring in the sediment column (diagenesis, sediment burial, fluid advection, and multicomponent diffusion) and to estimate net seafloor fluxes of solutes. Within the sediment section, the reactions controlling the concentrations of the solutes listed above are organic matter degradation via SO4 reduction, dissolution of amorphous silica, reductive dissolution of amorphous Fe(III)-(hydr)oxide, and precipitation of calcite, carbonate fluorapatite, and amorphous Fe(II)-sulfide. Rates of specific discharge estimated from pore-water Mg profiles are 2 to 3 mm/yr. At this site the basement hydrothermal system is a source of NH4, SiO2(aq), and Ca, and a sink of SO4, PO4, and alkalinity. Reaction within the sediment column increases the hydrothermal sources of NH4 and SiO2(aq), increases the hydrothermal sinks of SO4 and PO4, and decreases the hydrothermal source of Ca. Reaction within the sediment column has a spatially variable effect on the hydrothermal flux of alkalinity. Because the model we used was capable of simulating the observed pore-water chemistry by using mechanistic descriptions of the biogeochemical processes occurring in the sediment column, it could be used to examine the physical controls on hydrothermal fluxes of solutes in this setting. Two series of simulations in which we varied fluid flow rate (1 to 100 mm/yr) and sediment thickness (10 to 100 m) predict that given the reactions modeled in this study, the sediment section will contribute most significantly to fluxes of SO4 and NH4 at slow flow rates and intermediate sediment thickness and to fluxes of SiO2(aq) at slow flow rates and large sediment thickness. Reaction within the sediment section could approximately double the hydrothermal sink of PO4 over a range of flow rates and sediment thickness, and could slightly decrease (by

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological investigations during the cruise of M/V POLARSIRKEL were part of the scientific programme accompanying the pre-site survey. On 125 biological stations, 272 hauls on plankton and fish were carried out. 24 fish species had been determined, most of them had previously not been found in the Weddell Sea. The investigations also comprised a count of birds and seals. The fate of fluorine in the food chain and cadmium analyses were subject of the biochemical investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter documents the chemical changes produced by hydrothermal alteration of basalts drilled on Leg 83, in Hole 504B. It interprets these chemical changes in terms of mineralogical changes and alteration processes and discusses implications for geochemical cycling. Alteration of Leg 83 basalts is characterized by nonequilibrium and is heterogeneous on a scale of centimeters to tens or hundreds of meters. The basalts exhibit trends toward losses of SiO2, CaO, TiO2; decreases in density; gains of MnO, Na2O, CO2, H2O+ , S; slight gains of MgO; increased oxidation of Fe; and variable changes in A12O3. Some mobility of rare earth elements (REE) also occurred, especially the light REE and Eu. The basalts have lost Ca in excess of Mg + Na gains. Variations in chemical trends are due to differing water/rock ratios, substrate control of secondary mineralogy, and superimposition of greenschist and zeolite facies mineralogies. Zeolitization resulted in uptake of Ca and H2O and losses of Si, Al, and Na. These effects are different from the Na uptake observed in other altered basalts from the seafloor attributed to the zeolite facies and are probably due to higher temperatures of alteration of Leg 83 basalts. Basalts from the transition zone are enriched in Mn, S, and CO2 relative to the pillow and dike sections and contain a metal-sulfide-rich stockwork zone, suggesting that they once were located within or near a hydrothermal upflow zone. Samples from the bottom of the dike section are extensively fractured and recrystallized indicating that alteration was significantly affected by local variations in permeability.