943 resultados para Domkirche St. Petri (Bremen, Germany)
Resumo:
Am Mittelatlantischen Rücken befinden sich zahlreiche intermontane Sedimentbecken. Ein solches 8 x 14 km großes und bereits im Rahmen der internationalen Bohrprogramme ODP und DSDP mehrmals beprobtes und untersuchtes Sedimentbecken ist "North Pond". In Februar und März 2009 wurde erstmals ein umfassender Parasound-Survey in "North Pond" durchgeführt. Parasound-Daten werden zur Untersuchung oberflächennaher Sedimentstrukturen genutzt. Dabei können kleinskalige Rutschungen, Störungen und Sedimentabfolgen abgebildet werden, die mit niederfrequenterer Seismik nicht erkannt werden können.
Resumo:
Large carbonate mound structures have been discovered in the northern Porcupine Seabight (Northeast Atlantic) at depths between 600 and 1000 m. These mounds are associated with the growth of deep-sea corals Lophelia pertusa and Madrepra oculata. In this study, three sediment cores have been analysed. They are from locations close to Propeller Mound, a 150 m high ridge-like feature covered with a cold-water coral ecosystem at its upper flanks. The investigations are concentrated on grain-size analyses, carbon measurements and on the visual description of the cores and computer tomographic images, to evaluate sediment content and structure. The cores portray the depositional history of the past ~31 kyr BP, mainly controlled by sea-level fluctuations and the climate regime with the advance and retreat of the Irish Ice Sheet onto the Irish Mainland Shelf. A first advance of glaciers is indicated by a turbiditic release slightly older than 31 kyr BP, coherent with Heinrich event 3 deposition. During Late Marine Isotope Stage 3 (MIS 3) and MIS 2 shelf erosion prevailed with abundant gravity flows and turbidity currents. A change from glaciomarine to hemipelagic contourite sedimentation during the onset of the Holocene indicates the establishment of the strong, present-day hydrodynamic regime at intermediate depths. The general decrease in accumulation of sediments with decreasing distance towards Propeller Mound suggests that currents (turbidity currents, gravity flows, bottom currents) had a generally stronger impact on the sediment accumulation at the mound base for the past ~31 kyr BP, respectively.
Resumo:
On- and off-mound sediment cores from Propeller Mound (Hovland Mound province, Porcupine Seabight) were analysed to understand better the evolution of a carbonate mound. The evaluation of benthic foraminiferal assemblages from the off-mound position helps to determine the changes of the environmental controls on Propeller Mound in glacial and interglacial times. Two different assemblages describe the Holocene and Marine Isotope Stage (MIS) 2 and late MIS 3 (~31 kyr BP). The different assemblages are related to changes in oceanographic conditions, surface productivity and the waxing and waning of the British Irish Ice Sheet (BIIS) during the last glacial stages. The interglacial assemblage is related to a higher supply of organic material and stronger current intensities in water depth of recent coral growth. During the last glaciation the benthic faunas showed high abundances of cassidulinid species, implying cold bottom waters and a reduced availability of organic matter. High sedimentation rates and the domination of Elphidium excavatum point to shelf erosion related to sea-level lowering (~50 m) and the progradation of the BIIS onto the shelf. A different assemblage described for the on-mound core is dominated by Discanomalina coronata, Gavelinopsis translucens, Planulina ariminensis, Cibicides lobatulus and to a lower degree by Hyrrokkin sarcophaga. These species are only found or show significantly higher relative abundances in on-mound samples and their maximum contribution in the lower part of the record indicates a higher coral growth density on Propeller Mound in an earlier period. They are less abundant during the Holocene, however. This dataset portrays the boundary conditions of the habitable range for the cold-water coral Lophelia pertusa, which dominates the deep-water reefal ecosystem on the upper flanks of Propeller Mound. The growth of this ecosystem occurs during interglacial and interstadial periods, whereas a retreat of corals is documented in the absence of glacial sediments on-mound. Glacial conditions with cold intermediate waters, a weak current regime and high sedimentation rates provide an unfavourable environmental setting for Lophelia corals to grow. A Late Pleistocene decrease is observed in the mound growth for Propeller Mound, which might face its complete burial in the future, as it already happened to the buried mounds of the Magellan Mound province further north.
Resumo:
A multivariable approach utilising bulk sediment, planktonic Foraminifera and siliceous phytoplankton has been used to reconstruct rapid variations in palaeoproductivity in the Peru-Chile Current System off northern Chile for the past 19000 cal. yr. During the early deglaciation (19000-16000 cal. yr BP), our data point to strongest upwelling intensity and highest productivity of the past 19 000 cal. yr. The late deglaciation (16000-13000 cal. yr BP) is characterised by a major change in the oceanographic setting, warmer water masses and weaker upwelling at the study site. Lowest productivity and weakest upwelling intensity are observed from the early to the middle Holocene (13000-4000 cal. yr BP), and the beginning of the late Holocene (<4000 cal. yr BP) is marked by increasing productivity, mainly driven by silicate-producing organisms. Changes in the productivity and upwelling intensity in our record may have resulted from a large-scale compression and/or displacement of the South Pacific subtropical gyre during more productive periods, in line with a northward extension of the Antarctic Circumpolar Current and increased advection of Antarctic water masses with the Peru-Chile Current. The corresponding increase in hemispheric thermal gradient and wind stress induced stronger upwelling. During the periods of lower productivity, this scenario probably reversed.