980 resultados para Colorado-Big Thompson Project (U.S.)
Resumo:
At Site 464, a 308-meter-deep hole was drilled on the Hess Rise (39°51.64'N, 173°53.33'E; water depth 4637 m). The upper strata consist of siliceous clay and oozes of Pleistocene, Pliocene, and possibly latest Miocene ages (36 m) and the lower strata are Albian chert, chalk, and marlstone (219 m). The middle part of the stratigraphic section is pelagic brown clay (53 m) which is essentially barren of microfossils except for ichthyoliths. At the base of this middle unit in Core 10 is a recrystallized Cretaceous radiolarian assemblage and an impoverished late Miocene nannofossil assemblage. Fifteen samples from Cores 6 through 10 in the middle unit and three samples from the overlying siliceous clay were examined for ichthyoliths.
Resumo:
Obtaining long, continuous, and undisturbed sections of unconsolidated Neogene deep sea sedimentary sections has been limited by (1) practical length of piston cores to about 30 meters and (2) disturbance of sediment by rotary drilling with Glomar Challenger. The relatively high deposition rates of late Neogene sediments in the North Atlantic and in the Caribbean in particular has limited penetration, with conventional piston coring, to sediments not much older than late Pliocene in the Atlantic and not even through the late Pleistocene in the Caribbean. Rotary drilling has penetrated much older sediments in both areas, but the cores suffered extensive drilling disturbance that seriously degrades the Paleomagnetism of the material. Utilization of the hydraulic piston corer on the Challenger combines the advantage of a generally undisturbed recovery and great penetration to produce long, relatively undisturbed sections of late Neogene and Quaternary sediments suitable for paleomagnetic studies. In this chapter we present paleomagnetic data from Site 502. We tried to determine relative azimuthal orientation of successive cores (see Introduction for details). Because the low latitude of the site meant a small (inclination of about 22°) vertical component of magnetization, reversals of magnetization could easily be detected only in changes in the horizontal component, as 180° shifts in the declination direction of magnetization. Based on information from the core orienting device, a fiducial line was drawn the length of each core prior to cutting it into the standard 1.5 meter sections.