287 resultados para Chaohu Lake
Resumo:
This article reviews the history, chemical stratification, biology and biogeochemistry of Ace Lake, which is one of the many marine-derived meromictic (permanently stratified) lakes in the Vestfold Hills, Eastern Antarctica. The lake has an area of 18 ha, a maximum depth of 25 m, and a salinity range from 7 to 43 g l**-1. The lake mixes to a depth of 7 m in late winter as a result of brine freeze out during ice formation. Deeper mixing is precluded by a sharp halocline. The water beneath 12 m is permanently anoxic, The lake was formed approximately 10,800 yr BP as the polar ice cap melted. Sea level rise 7,800 yr BP resulted in invasion of seawater into the initially freshwater lake. Subsequently, sea level dropped, and the now saline lake became isolated from the ocean. The biota of the lake was derived from species trapped when the connection between the lake and the ocean was cut off. The oxic zone above 12 m supports a relatively simple community which includes microbial mats, four major species of phytoplankton (including a picocyanobacterium), two copepod species, and a variety of heterotrophic flagellates and ciliates. The anoxic zone contains populations of photosynthetic sulfur, sulfate reducing, fermentative and methanogenic bacteria, which combine to remineralise organic carbon which sediments from the upper waters. Research on the physics, biology and chemistry of Ace Lake has contributed significantly to knowledge of Antarctic meromictic lakes.
Resumo:
Results of investigations of Baikal bottom sediments from a long core (BDP-97) and several short (0-1 m) cores are presented. It can be shown that Holocene sediments in the Baikal basins consist of biogenic-terrigenous muds accumulated under still sedimentation conditions, and of turbidites formed during catastrophic events. The turbidites can be distinguished from the host sediments by their enrichment in heavy minerals and thus their high magnetic susceptibility. Often, Pliocene and Pleistocene diatom species observed in the Holocene sediments (mainly in the turbidites) point to redeposition of ancient offshore sediments. Our results indicate that deltas, littoral zones, and continental slopes are source areas of turbidites. The fact that the turbidites occur far from their sources confirms existence of high-energy turbidity currents responsible for long-distance lateral-sediment transport to the deep basins of the lake.
Resumo:
Lake Baikal, the world's most voluminous freshwater lake, has experienced unprecedented warming during the last decades. A uniquely diverse amphipod fauna inhabits the littoral zone and can serve as a model system to identify the role of thermal tolerance under climate change. This study aimed to identify sublethal thermal constraints in two of the most abundant endemic Baikal amphipods, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, and Gammarus lacustris, a ubiquitous gammarid of the Holarctic. As the latter is only found in some shallow isolated bays of the lake, we further addressed the question whether rising temperatures could promote the widespread invasion of this non-endemic species into the littoral zone. Animals were exposed to gradual temperature increases (4 week, 0.8 °C/d; 24 h, 1 °C/h) starting from the reported annual mean temperature of the Baikal littoral (6 °C). Within the framework of oxygen- and capacity-limited thermal tolerance (OCLTT), we used a nonlinear regression approach to determine the points at which the changing temperature-dependence of relevant physiological processes indicates the onset of limitation. Limitations in ventilation representing the first limits of thermal tolerance (pejus (= "getting worse") temperatures (Tp)) were recorded at 10.6 (95% confidence interval; 9.5, 11.7), 19.1 (17.9, 20.2), and 21.1 (19.8, 22.4) °C in E. verrucosus, E. cyaneus, and G. lacustris, respectively. Field observations revealed that E. verrucosus retreated from the upper littoral to deeper and cooler waters once its Tp was surpassed, identifying Tp as the ecological thermal boundary. Constraints in oxygen consumption at higher than critical temperatures (Tc) led to an exponential increase in mortality in all species. Exposure to short-term warming resulted in higher threshold values, consistent with a time dependence of thermal tolerance. In conclusion, species-specific limits to oxygen supply capacity are likely key in the onset of constraining (beyond pejus) and then life-threatening (beyond critical) conditions. Ecological consequences of these limits are mediated through behavioral plasticity in E. verrucosus. However, similar upper thermal limits in E. cyaneus (endemic, Baikal) and G. lacustris (ubiquitous, Holarctic) indicate that the potential invader G. lacustris would not necessarily benefit from rising temperatures. Secondary effects of increasing temperatures remain to be investigated.
Resumo:
A large deposit of ferromanganese oxide coated sands and scattered manganese nodules occurs in the northern portion of Lake Ontario. The Mn and Fe contents of the concretions are similar to those in concretions from other environments, while their Ni, Cu, and Co contents are lower than in deep-sea nodules, but higher than in most previously described lacustrine concretions. Pb and Zn are high in the coatings and exceed the concentrations found in many previously analyzed Mn deposits. Within the deposit, Mn, Ni, Co, and Zn contents are correlated, and they vary inversely with Fe. Mn, Fe, Ni, Cu, and Pb are present in the interstitial waters of the sediments underlying the deposit in higher concentrations than in the overlying lake waters, thus providing a potential source of metals for concretion formation.The origin and compositional variations in the deposit possibly can be explained in terms of the fractionation and precipitation of Fe and Mn as a result of redox variations in the lake sediments. Eh increases from south to north across the deposit in such a way that iron may be selectively oxidized and precipitated in the south and manganese, in the north. The upward diffusion of Mn, Fe, and associated elements from the underlying sediments probably provides the principal source of the metals in the south of the deposit, while metal-enriched bottom waters are probably the principal source in the north.
Resumo:
A lacustrine sediment core from Store Koldewey, northeast Greenland, was biogeochemically, biologically and sedimentologically investigated in order to reconstruct long- and short-term climatic and environmental variability. The chronology of the uppermost 189 cm of the record is based on ten 14C AMS age determinations of aquatic mosses. The record covers almost the entire Holocene and revealed changes on multidecadal to centennial scales. Dating of the oldest mosses shows that lacustrine biogenic productivity already began at around 11 cal. kyr BP. This age pre-dates the onset of biogenic productivity in other lakes on Store Koldewey by about 2 kyr. In spite of the early onset of biogenic production organic matter accumulation remained low and minerogenic sedimentation dominated. At about 9.5 cal. kyr BP moss, sulphur, organic carbon and biogenic silica content started to increase, indicating that the environment stabilized and the biogenic production in the lake adjusted to more preferable conditions. Subsequently, the biogenic productivity experienced repeated changes and varied both on long- and short-term scales. The long-term trend shows a maximum during the early Holocene thus responding to increased temperatures during the Holocene Thermal Maximum. Superimposed on the long-term trend, biogenic productivity also experienced repeated short-term fluctuations that match partly the NGRIP temperatures. The most pronounced decrease of biogenic productivity occurred at around 8.2 cal. kyr BP. Perennial lake ice coverage resulting from low temperatures is supposed to have caused decreased lacustrine biogenic productivity. From the middle Holocene to the present repeated decreases of productivity occurred that could be related to periods with severe sea-ice conditions of the East Greenland Current. Besides the dependence on air temperature it therefore demonstrates the sensitivity of lacustrine biogenic productivity in coastal high arctic areas to short-term cold spells that are mediated by the currents emanating from the Arctic Ocean. However, the data also emphasize the difficulties associated with the interpretation of lacustrine records.
Resumo:
A high-resolution sedimentological and geochemical study was performed on a 20 m long core from the alpine Lake Anterne (2063 m a.s.l., NW French Alps) spanning the last 10 ka. Sedimentation is mainly of minerogenic origin. The organic matter quantity (TOC%) as well as its quality (hydrogen (HI) and oxygen (OI) indices) both indicate the progressive onset and subsequent stabilization of vegetation cover in the catchment from 9950 to 5550 cal. BP. During this phase, the pedogenic process of carbonate dissolution is marked by a decrease in the calcium content in the sediment record. Between 7850 and 5550 cal. BP, very low manganese concentrations suggest anoxic conditions in the bottom-water of Lake Anterne. These are caused by a relatively high organic matter (terrestrial and lacustrine) content, a low flood frequency and longer summer stratification triggered by warmer conditions. From 5550 cal. BP, a decrease in TOC, stabilization of HI and higher sedimentation rates together reflect increased erosion rates of leptosols and developed soils, probably due to a colder and wetter climate. Then, three periods of important soil destabilization are marked by an increased frequency and thickness of flood deposits during the Bronze Age and by increases in topsoil erosion relative to leptosols (HI increases) during the late Iron Age/Roman period and the Medieval periods. These periods are also characterized by higher sedimentation rates. According to palynological data, human impact (deforestation and/or pasturing activity) probably triggered these periods of increased soil erosion.
Resumo:
A mid-Holocene climate optimum is inferred from a palaeosalinity reconstruction of a closed saline lake (Beall Lake) from the Windmill Islands, East Antarctica using an expanded diatom salinity weighted averaging (WA) regression and calibration model. The addition of 14 lakes and ponds from the Windmill Islands, East Antarctica, to an existing weighted averaging regression and calibration palaeosalinity model of 33 lakes from the Vestfold Hills, East Antarctica expands the number of taxa and lakes and the range of salinity in the existing model and improves the model's predictive ability. This improved model was used to infer Holocene changes in lake water salinity in Beall Lake, Windmill Islands. Six changes in diatom-inferred salinity in Beall Lake are put into broad chronological context based on three radiocarbon dates: as the East Antarctic Ice Sheet (EAIS) retreated from the Windmill Islands during the early Holocene (~9000-8130 corr. yr BP), Beall Lake formed as a melt water-fed freshwater lake, which gradually became more saline as marine influence increased from ~8000 corr. yr BP. Between ~8000 and 4800 corr. yr BP, the diatom assemblage included planktonic marine taxa such as Chaetoceros spp. and cryophilic taxa such as Fragilariopsis cylindrus, which indicate favourable summer growth conditions. A mid-Holocene warm period produced a climate that was warmer and more humid with increased precipitation and snow accumulation. This is reflected in the Beall Lake core as a reduction in the salinity of the lake diatom assemblage from ~4800-4600 corr. yr BP. Holocene isostatic uplift rates in the Windmill Islands vary from 5-6 m/1000 yr. By applying this uplift rate, it is calculated that the bedrock would have risen above sea level by ~4000 yr BP. The Beall Lake core diatom assemblage from ~4600-2900 corr. yr BP includes both marine cryophilic and planktonic taxa together with freshwater benthic and planktonic lacustrine taxa. This mix of species indicates the emergence of the lake from the sea around ~4600 corr. yr BP. From ~2800 corr. yr BP, retreat of the ice margin led to increasing melt water inputs and associated freshening of the lake basin until ~1900 corr. yr BP. The lake basin had no oceanic influence by this time, allowing a terrestrial freshwater flora to establish and thrive for the next ~1000 yr. At ~1850 corr. yr BP, a sudden and rapid salinity change is evident in Beall Lake. A late Holocene warm period between 2000 and 1000 yr BP has been observed in ice core records from Law Dome (an ice cap abutting the Windmill Islands to the east and north). It is therefore inferred that, at ~1850 corr. yr BP, summer temperatures within the Beall Lake catchment area were much higher than present summer temperatures. The climate optimum identified in the Beall Lake core ~4800 yr BP confirms mid-Holocene warming of the Windmill Islands and suggests a synchronous mid-Holocene climate optimum occurred across coastal East Antarctica. In addition, the abrupt climate change inferred at ~1850 yr BP suggests that higher resolution sampling of sediment cores from coastal East Antarctic limnological oases will provide more evidence of rapid climate change events over coastal East Antarctica in future.