112 resultados para Cd
Resumo:
The late Miocene carbon shift (~6.2 Myr) -a 0.5-1.0 per mil, d13C decrease in benthic and planktonic foraminifera- has been ascribed to changes in global inventory, deep-ocean circulation, and/or productivity. Cadmium, d13C, and nutrients in the ocean are linked; comparison of d13C and Cd/Ca yields circulation and chemical inventory information not available from either alone. We determined Cd/Ca ratios in late Miocene benthic foraminifera from DSDP Site 289. Results include: (1) late Miocene Pacific Cd/Ca values fall between those of late Quaternary Atlantic and Pacific benthic foraminifera; (2) there are no systematic Cd/Ca offsets between Cibicidoides kullenbergi, Cibicidoides wuellerstorfi and Uvigerina spp.; and (3) there is a very slight Cd/Ca change coincident with d13C. Cd/Ca, slightly higher in younger, isotopically lighter samples, exhibits a smaller increase than predicted if circulation were the primary cause of the carbon shift. The carbon shift may have been due to a long-term shift in the steady-state carbon isotope input or to a change in the sedimentation of organic carbon relative to calcium carbonate.
Resumo:
Recent studies have stressed the role of high latitude nutrient levels and productivity in controlling the carbon isotopic composition of the deep sea and the CO2 content of the atmosphere. We undertook a study of the chemical composition of the polar planktonic foraminifer Neogloboquadrina pachyderma (s., sinistral coiling) from 30 late Holocene samples and 49 down core records from the high-latitude North and South Atlantic Oceans to evaluate the history of sea surface chemical change from glacial to interglacial time. Stable isotopic analysis of coretop samples from the Atlantic, Pacific and Southern Oceans shows no significant correlation between the delta13C of N. pachyderma and either delta13C or PO4 in seawater. Conversely, Cd/Ca ratios in planktonic foraminifera are consistent with the PO4 content of surface waters. The level of maximum glaciation (18,000 yr B.P.), identified by CLIMAP and delta18O, was chosen for mapping. Isopleths of delta18O on N. pachyderma (s.) in the North Atlantic reveal a pattern largely influenced by sea surface temperature (S.S.T.) and generally support the S.S.T. reconstruction of CLIMAP. Differences between the two suggest significantly lower salinity in North Atlantic surface waters at high latitudes than in lower latitudes. Down core delta13C records of N. pachyderma confirm that low delta13C values occurred in the northeast Atlantic during the latest glacial maximum (Labeyrie and Duplessy, 1985, doi:10.1016/0031-0182(85)90069-0). However, a map of delta13C for the 18,000 yr B.P. level for a much larger region in the North Atlantic shows that minimum N. pachyderma delta13C occurred in temperate waters. N. pachyderma delta13C decreased toward the southwest, reaching a minimum of -1 per mil at 37°N. Despite the variability seen in delta13C records of N. pachyderma, none of our cores show significant temporal variability in Cd/Ca. From the combined Cd/Ca and delta13C data we can see no evidence for an upwelling gyre in the eastern North Atlantic during the latest glacial maximum, nor evidence that the southern and northern oceans had significantly different levels of preformed nutrients than today.
Resumo:
We present evidence that the characteristic chemical signature (based on coupled benthic foraminiferal Cd/Ca and d13C) of Antarctic Intermediate waters (AAIW) penetrated throughout the intermediate depths of the Atlantic basin to the high-latitude North Atlantic during the abrupt cooling events of the last deglaciation: Heinrich 1 and the Younger Dryas. AAIW may play the dynamic counterpart to the "bipolar seesaw" when near-freezing salty bottom waters from the Antarctic (AABW) sluggishly ventilate the deep ocean. Our data reinforce the concept that interglacial circulation is stabilized by salinity feedbacks between salty northern sourced deep waters (NADW) and fresh southern sourced waters (AABW and AAIW). Further, the glacial ocean may be susceptible to the more finely balanced relative densities of NADW and AAIW, due to either freshwater input or a reversal of the salinity gradient, such that the ocean is poised for NADW collapse via a negative salinity feedback. The unstable climate of the glacial period and its termination may arise from the closer competition for ubiquity at intermediate depths between northern and southern sourced intermediate waters.
Resumo:
We describe the contemporary hydrography of the pan-Arctic land area draining into the Arctic Ocean, northern Bering Sea, and Hudson Bay on the basis of observational records of river discharge and computed runoff. The Regional Arctic Hydrographic Network data set, R-ArcticNET, is presented, which is based on 3754 recording stations drawn from Russian, Canadian, European, and U.S. archives. R-ArcticNET represents the single largest data compendium of observed discharge in the Arctic. Approximately 73% of the nonglaciated area of the pan-Arctic is monitored by at least one river discharge gage giving a mean gage density of 168 gages per 106 km2. Average annual runoff is 212 mm yr?1 with approximately 60% of the river discharge occurring from April to July. Gridded runoff surfaces are generated for the gaged portion of the pan-Arctic region to investigate global change signals. Siberia and Alaska showed increases in winter runoff during the 1980s relative to the 1960s and 1970s during annual and seasonal periods. These changes are consistent with observations of change in the climatology of the region. Western Canada experienced decreased spring and summer runoff.
Resumo:
Measurements of Sr/Ca of benthic foraminifera show a linear decrease with water depth which is superimposed upon significant variability identified by analyses of individual foraminifera. New data for Cd/Ca support previous work in defining a contrast between waters shallower and deeper than ~2500 m. Measured element partition coefficients in foraminiferal calcium carbonate relative to sea water (D) have been described by means of a one-box model in which elements are extracted by Rayleigh distillation from a biomineralization reservoir that serves for calcification with a constant fractionation factor (alpha), such that D = (1 - f**alpha)/(l - f), where f is the proportion of Ca remaining after precipitation. A modification to the model recognises differences in element speciation. The model is consistent with differences between D[Sr], D[Ba], and D[Cd] in benthic but not planktonic foraminifera. Depth variations in D for Sr and Ba are consistent with the model, as are differences in depth variation of D[Cd] in calcitic and aragonitic benthic foraminifera. The shallower depth variations may reflect increasing calcification rates with increasing water depth to an optimum of about 2500 m. Observations of unusually lower DCd for some deep waters, not accompanied by similar [Sr], or D[Ba] may be because of dissolution or a calcification response to a lower carbonate saturation state.
Resumo:
The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscs Macoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis and Astarte borealis from the southern Baltic was determined. The surface sediments and ferromanganese concretions associated with the molluscs were also analysed for concentration of these metals. Species- and region-dependent differences in the metal levels of the organisms were observed. The properties of molluscs analysed which have a tendency toward elevated biological tolerance of selected trace metals were specified. The interelement relationship between metal concentrations in the soft tissue and the shell was estimated and was discussed.