203 resultados para Catalisadores ziegler-natta
Resumo:
Selected sections, containing Devonian/Carboniferous boundary beds, are described from the northern and northeastern margin of the Rhenish massif, especially from the Seiler region near Iserlohn and the Warstein area. These sections are from prospecting trenches, quarries and road cuts. The dominantly carbonate sequences were investigated in regard to the development of conodonts. The Devonian/Carboniferous boundary could be placed precisely in both areas by means of the phylogenetic transition from Siphonodella praesulcata to S. sulcata. Compared investigations lead to the following conclusions: - The basal part of the Hangenberg limestone is heterochronous. - The Devonian/Carboniferous boundary lies distinctly below the Hangenberg limestone, i. e. at the same stratigraphical level as the Stockum limestone. - The Imitoceras limestone lens of Stockum and the Stockum limestone represent a special facies within the Hangenberg schists. 80th belong either to the praesulcata- and sulcata-zone or are restricted only to the sulcata-zone. - Protognathodus kuehni appears together with Siphonodella sulcata. Where S. sulcata is lacking, P. kuehni may be considered as a valid index conodont indicating the beginning of the Carboniferous. - The upper part of the Wocklum beds, following above the Wocklum limestone, usually consists up to the lower Carbonilerous boundary in a more or less consistent facies, that of the Hangenberg schists. Only in the section 01 the northeastern wall of the eastern Provincial Quarry at Drewer and in the road profile Rüthen - Nuttlar, the Devonian/Carboniferous boundary is to be placed in a continuous carbonate sequence. - The eastern Provincial Quarry at Drewer is therefore proposed as a new candidate section for the Devonian/Carboniferous boundary stratotype. - In many places the carbonates at the Devonian / Carboniferous boundary and the Hangenberg limestone are characterized by an impoverished conodont fauna. - Using platform conodonts, biofacies models are developed, permitting to conclude on the position of the respective setting 01 sedimentation area, either close to a rise or a basin.
Resumo:
Neptunian dikes and cavities as weil as their fillings are described from Middle to Upper Devonian carbonates of the Warstein area. The genesis of the pre-Upper Carboniferous dikes is due to pre-orogenic synsedimentary tensional movements. Lifting, subsidence and tilting caused joints and cracks, which are enlarged to dikes and cavities on submarine conditions. The post-Upper Carboniferous dikes are based on the orogenesis during Upper Carboniferous time, causing numerous tectonical divisional planes in the sediments. Along these planes a far-reaching karstification took place since mesozoic time. According to their size the cavities are subdivided into macro-, mega- and microdikes. With the exception of one macrodike all the others are limited to the massive limestone. Megadikes especially occur in Upper Devonian cephalopod limestone and in the Erdbach limestone, microdikes can be found in all carbonatic rocks. The dikes follow pre-orogenic, tectonical and sedimentary divisional planes and are orientated to ac-, bc- as well as bedding planes and diagonal directions. The fillings happened down from above either in a solitary event or repeatedly in long-lived dikes during a span of several ten millions of years. More seldom the fillings took place laterally or upside from beneath. The dikes contain - without regard to autochthonous conodont faunas - older and/or younger mixed faunas, too. Occasionally they were used as life district by a trilobite fauna adapted to the dikes. The dikes represent sedimentary pitfalls and conserve sediments eroded in other places. Therefore, by aid of the fillings, it can be demonstrated, that stratigraphic gaps are not absolutely due to primary interruptions of sedimentation, but were caused by reworking. Some dikes contain the distal offsets of slides and suspension streams. Relations between condensation and development of dikes could not be derived in the Warstein area. However, an increase of the frequency of dikes towards east to the eastern margin of the Warstein carbonate platform could be pointed out. This margin is a slope, persisting more than 10 millions of years, between a block and a basin. Evidently cracks and dikes, which were caused by settlements, slides and earth quakes, occured there frequently. The Warstein dikes and cavities, caused by karstification, are filled with terrestrial Lower Cretaceous, marine Upper Cretaceous and terrestrial Pleistocene to Holocene sediments. Tertiary sediments could not be detected.