141 resultados para Carbonate precipitation
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.
Resumo:
Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.
Resumo:
One of the expected scientific results of Ocean Drilling Program Leg 167 was to reconstruct the Neogene history of biogenic calcium carbonate accumulation in the northeastern Pacific along the California margin (Lyle, Koizumi, Richter, et al., 1997). This aims to constrain inorganic carbon burial rates, deep-water hydrography in the North Pacific, and linkages between deep Atlantic and Pacific circulation and carbonate accumulation or dissolution patterns. Data are presented for four sites. Two of them are located in the California bight-East Cortez Basin (Site 1012: 32°16.970?N 118°23.024?W, 1773 m) and San Nicholas Basin (Site 1013: 32°48.040??, 118°53.992?W, 1564 m). The others are the dedicated Hole 1017E at Site 1017 (34°32.099?N, 121°6.430?W, 955 m) and Site 1019 in the Eel River Basin (41¢X40.972?N, 124°55.975?W, 977 m). Reconstruction of paleo-sea-surface temperatures (SST) by determining the alkenone unsaturation index of the extractable organic matter is an independent technique and helps to verify oxygen-isotope-based estimates. Results from the uppermost 600 cm of the dedicated Hole 1017E are expected to reveal the local temperature history of the last 30 k.y.
Resumo:
Ocean acidification leads to changes in marine carbonate chemistry that are predicted to cause a decline in future coral reef calcification. Several laboratory and mesocosm experiments have described calcification responses of species and communities to increasing CO2. The few in situ studies on natural coral reefs that have been carried out to date have shown a direct relationship between aragonite saturation state (Omega arag) and net community calcification (Gnet). However, these studies have been performed over a limited range of Omega arag values, where extrapolation outside the observational range is required to predict future changes in coral reef calcification. We measured extreme diurnal variability in carbonate chemistry within a reef flat in the southern Great Barrier Reef, Australia. Omega arag varied between 1.1 and 6.5, thus exceeding the magnitude of change expected this century in open ocean subtropical/tropical waters. The observed variability comes about through biological activity on the reef, where changes to the carbonate chemistry are enhanced at low tide when reef flat waters are isolated from open ocean water. We define a relationship between net community calcification and Omega arag, using our in situ measurements. We find net community calcification to be linearly related to Omega arag, while temperature and nutrients had no significant effect on Gnet. Using our relationship between Gnet and Omega arag, we predict that net community calcification will decline by 55% of its preindustrial value by the end of the century. It is not known at this stage whether exposure to large variability in carbonate chemistry will make reef flat organisms more or less vulnerable to the non-calcifying physiological effects of increasing ocean CO2 and future laboratory studies will need to incorporate this natural variability to address this question.
Resumo:
Layered Fe-Mn crusts from the off-axis region of the first segment of the Central Indian Ridge north of the Rodrigues Triple Junction were studied geochemically and mineralogically. Vernadite (delta-MnO2) is the main mineral oxide phase. 230Thxs and Co concentrations suggest high growth rates of up to 29 mm/Myr and a maximum age of the basal crust layer of 1 Ma. Whereas most of the major and minor elements show concentrations which are typical of hydrogenetic formation, Co, Pb, Ni and Ti concentrations are strikingly lower. Concentrations and distribution of the strictly trivalent rare-earths and yttrium (REY) are typical of hydrogenetic ferromanganese oxide precipitates, but in marked contrast, the crusts are characterized by negative CeSN (shale normalized) anomalies and (Ce/Pr)SN ratios less than unity. Profiles through the crusts reveal only minor variations of the REY distribution and (Ce/Pr)SN ratios range from 0.45 to 0.68 (compared to ratios of up to 2 for typical hydrogenetic crusts from the Central Indian Basin). The apparent bulk partition coefficients between the crusts and seawater suggest that for the strictly trivalent REY the adsorption-desorption equilibrium has been reached. Positive Ce anomalies in the partition coefficient patterns reveal preferential uptake of Ce, but to a lesser extent than in normal hydrogenetic crusts. A new parameter (excess Ce, Cexs) to quantify the degree of decoupling of Ce from REY(III) is established on the basis of partition coefficients. Cexs/Cebulk ratios suggest that the CIR crusts formed by precipitation of Fe-Mn oxides from a hydrothermal plume and that in hydrothermal plumes and normal seawater the enrichment of Ce results from the same oxidative sorption process. The growth rates, calculated with 230Thxs data as well as with the Co formula, are inversely related to Cexs.
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.