122 resultados para COUPLED-WAVE ANALYSIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrosilite-fayalite bearing charnockite and biotite-hornblende bearing granite are exposed in Mühling-Hofmannfjella, central Dronning Maud Land of East Antarctica. Both are interpreted as essentially parts of a single pluton in spite of their contrasting mineral assemblages. Based on petrologic and geochemical studies, it is proposed that H2O-undersaturated parent magma with igneous crustal component that fractionated under different oxygen fugacity conditions resulted in the Mühlig-Hofmannfjella granitoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increase in whole ocean alkalinity during glacial periods could account, in part, for the drawdown of atmospheric CO2 into the ocean. Such an increase was inevitable due to the near elimination of shelf area for the burial of coral reef alkalinity. We present evidence, based on down-core measurements of benthic foraminiferal B/Ca and Mg/Ca from a core in the Weddell Sea, that the deep ocean carbonate ion concentration, [CO3 2-], was elevated by ~25 µmol/kg during each glacial period of the last 800 kyrs. The heterogeneity of the preservation histories in the different ocean basins reflects control of the carbonate chemistry of the deep glacial ocean in the Atlantic and Pacific by the changing ventilation and chemistry of Weddell Sea waters. These waters are more corrosive than interglacial northern sourced waters, but not as undersaturated as interglacial southern sourced waters. Our inferred increase in whole ocean alkalinity can be reconciled with reconstructions of glacial saturation horizon depth and the carbonate budget, if carbonate burial rates also increased above the saturation horizon as a result of enhanced pelagic calcification. The Weddell records display low [CO3 2-] during deglaciations and peak interglacial warmth, coincident with maxima in %CaCO3 in the Atlantic and Pacific Oceans. Should the burial rate of alkalinity in the more alkaline glacial deepwaters outstrip the rate of alkalinity supply, then pelagic carbonate production by the coccolithophores, at the end of the glacial maximum could drive a decrease in ocean [CO3 2-] and act to trigger the deglacial rise in pCO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth element concentrations in ferromanganese concretions sampled from Slupsk Furrow in the Polish Exclusive Economic Zone are similar to those of concretions from the Gulf of Bothnia. The lack of positive Ce anomalies in the concretions from Slupsk Furrow indicates that they are formed under less oxidizing conditions than spheroidal concretions from the Gulf of Bothnia. Mossbauer studies indicate that poorly crystalline lepidocrosite is the principal iron oxyhydroxide mineral present in these concretions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty four core samples from CRP-1, seven from Quaternary strata (20-43.55 meters below sea floor or mbsf) and seventeen from early Miocene strata (43.55 to 147.69 mbsf), have been analysed for their grain-size distribution using standard sieve and Sedigraph techniques. The results are in good agreement with estimates of texture made as part of the visual core description for the 1 :20 core logs for CRP-1 (Cape Roberts Science Team, 1998). Interpretation of the analyses presented here takes into account the likely setting of the site in Quaternary times as it is today, with CRP-1 high on the landward flank of a well-defined submarine ridge rising several hundred metres above basins on either side. In contrast, seismic geometries for strata deposited in early Miocene times indicate a generally planar sea floor dipping gently seaward. Fossils from these strata indicate shallow water depths (< 100 m), indicating the possibility that waves and tidal currents may have influenced sea floor sediments. The sediments analysed here are considered in terms of 3 textural facies: diamict, mud (silt and clay) and sand. Most of the Quaternary section but only 30% of the early Miocene section is diamict, a poorly sorted mixture of sand and mud with scattered clasts, indicating little wave or current influence on its texture. Although not definitive, diamict textures and other features suggest that the sediment originated as basal glacial debris but has been subsequently modified by minor winnowing, consistent with the field interpretation of this facies as ice-proximal and distal glaciomarine sediment. Sediments deposited directly from glacier ice appear to be lacking. Mud facies sediments, which comprise only 10% of the Quaternary section but a third of the early Miocene section, were deposited below wave base and largely from suspension, and show features (described elsewhere in this volume) indicative of the influence of both glacial and sediment gravity flow processes. Sand facies sediments have a considerable proportion of mud, normally more than 20%, but a well-sorted fine-very fine sand fraction. In the context of the early Miocene coastal setting we interpret these sediments as shoreface sands close to wave base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past changes in the freshwater balance of the surface North Atlantic Ocean are thought to have influenced the rate of deep-water formation, and consequently climate (Broecker and Denton, 1989, doi:10.1016/0016-7037(89)90123-3; Manabe and Stouffer, 1996; doi:10.1038/378165a0). Although water-mass proxies are generally consistent with an impact of freshwater input on meridional overturning circulation (Boyle and Keigwin, 1987, doi:10.1038/330035a0), there has been little dynamic evidence to support this linkage. Here we present a 25,000 year record of variations in sediment grain size from south of Iceland, which indicates vigorous bottom-water currents during both the last glacial maximum and the Holocene period. Together with reconstructions of North Atlantic water-mass distribution, vigorous bottom currents suggest a shorter residence time of northern-source waters during the last glacial maximum, relative to the Holocene period. The most significant reductions in flow strength occur during periods that have been associated with freshening of the surface North Atlantic. The short-term deglacial oscillations in bottom current strength are closely coupled to changes in Greenland air temperature, with a minimum during the Younger Dryas cold reversal and a maximum at the time of rapid warming at the onset of the Holocene. Our results support a strong connection between ocean circulation and rapid climate change.