181 resultados para CO2 levels


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification, a process caused by the continuous rise of atmospheric CO2 levels, is expected to have a profound impact on marine invertebrates. Findings of the numerous studies conducted in this field indicate high variability in species responses to future ocean conditions. This study aimed at understanding the effects of long-term exposure to elevated pCO2 conditions on the performance of adult Echinometra sp. EE from the Gulf of Aqaba (Red Sea). During an 11-month incubation under high pCO2 (1,433 µatm, pHNBS 7.7) and control (435 µatm, pHNBS 8.1) conditions, we examined the urchins' somatic and gonadal growth, gametogenesis and skeletal microstructure. Somatic and gonadal growths were exhibited with no significant differences between the treatments. In addition, all urchins in the experiment completed a full reproductive cycle, typical of natural populations, with no detectable impact of increased pCO2 on the timing, duration or progression of the cycle. Furthermore, scanning electron microscopy imaging of urchin tests and spines revealed no signs of the usual observed effects of acidosis, such as skeletal dissolution, widened stereom pores or non-smoothed structures. Our results, which yielded no significant impact of the high pCO2 treatment on any of the examined processes in the urchins studied, suggest high resistance of adult Echinometra sp. EE to near future ocean acidification conditions. With respect to other findings in this area, the outcome of this study provides an example of the complicated and diverse responses of echinoids to the predicted environmental changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature reconstructions indicate that the Pliocene was ~3 °C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 2.8 to 3.3 million years ago from ODP Site 999. Our record is of high enough resolution (~19 Kyrs) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature, which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variations in the stable isotopic composition of benthic foraminifera from Deep-Sea Drilling Project (DSDP) site 502B in the Caribbean Sea are used to reconstruct Atlantic intermediate water circulation variability over the last 1.2 m.y. Comparison of this record with other North Atlantic benthic isotope records indicates that Atlantic intermediate water circulation was relatively enhanced during glacial maxima when North Atlantic deep water (NADW) production was reduced. However, a simple, compensatory relationship between intermediate and deepwater circulation is not apparent. Geochemical models have shown that such changes in ocean circulation can affect atmospheric CO2 levels by changing vertical nutrient and alkalinity profiles. The Delta delta13C difference between Caribbean site 502B and deep equatorial Pacific site 677 is highly coherent and in phase with ice volume. Like the delta18O record, there is an increase in amplitude (40%) and a large increase in 100 kyr power after 0.7 Ma. The 1.2? Delta delta13C amplitude scales to 70 ppm V in atmospheric CO2 using Boyle's (1986) box model result. The implied increase in CO2 amplitude after 0.7 Ma may suggest a positive feedback role in effecting the higher-amplitude climatic fluctuations which characterize the last 0.7 m.y.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high-resolution delta18O and delta13C records of benthic foraminifera from a 150,000-year long core from the Caribbean Sea indicate that there was generally high delta13C during glaciations and low delta13C during interglaciations. Due to its 1800-m sill depth, the properties of deep water in the Caribbean Sea are similar to those of middepth tropical Atlantic water. During interglaciations, the water filling the deep Caribbean Sea is an admixture of low delta13C Upper Circumpolar Water (UCPW) and high delta13C Upper North Atlantic Deep Water (UNADW). By contrast, only high delta13C UNADW enters during glaciations. Deep ocean circulation changes can influence atmospheric CO2 levels (Broecker and Takahashi, 1985; Boyle, 1988 doi:10.1029/JC093iC12p15701; Keir, 1988 doi:10.1029/PA003i004p00413; Broecker and Peng, 1989 doi:10.1029/GB003i003p00215). By comparing delta13C records of benthic foraminifera from cores lying in Southern Ocean Water, the Caribbean Sea, and at several other Atlantic Ocean sites, the thermohaline state of the Atlantic Ocean (how close it was to a full glacial or full interglacial configuration) is characterized. A continuum of circulation patterns between the glacial and interglacial extremes appears to have existed in the past. Subtracting the deep Pacific (~mean ocean water) delta13C record from the Caribbean delta13C record yields a record which describes large changes in the Atlantic Ocean thermohaline circulation. The delta13C difference varies as the vertical nutrient distribution changes. This new proxy record bears a striking resemblance to the 150,000-year-long atmospheric CO2 record (Barnola et al., 1987 doi:10.1038/329408a0). This favorable comparison between the new proxy record and the atmospheric CO2 record is consistent with Boyle's (1988a) model that vertical nutrient redistribution has driven large atmospheric CO2 changes in the past. Changes in the relative contribution of NADW and Pacific outflow water to the Southern Ocean are also consistent with Broecker and Peng's (1989) recent model for atmospheric CO2 changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological productivity and carbon export in the equatorial Atlantic are thought to have been dramatically higher during the last glacial period than during the Holocene. Here we reconstruct the pH and CO2 content of surface waters from the eastern equatorial Atlantic Ocean over the past ~30 k.y. using the boron isotope composition of Globigerinoides ruber (a mixed-layer-dwelling planktic foraminifera). Our new record, combined with previously published data, indicates that during the last glacial, in contrast to today, a strong west to east gradient existed in the extent of air:sea equilibrium with respect to pCO2 (DeltapCO2), with the eastern equatorial Atlantic acting as a significant source of CO2 (+100 µatm) while the western Atlantic remained close to equilibrium (+25 µatm). This pattern suggests that a fivefold increase in the upwelling rate of deeper waters drove increased Atlantic productivity and large-scale regional cooling during the last glacial, but the higher than modern DeltapCO2 in the east indicates that export production did not keep up with enhanced upwelling of nutrients. However, the downstream decline of DeltapCO2 provides evidence that the unused nutrients from the east were eventually used for biologic carbon export, thereby effectively negating the impact of changes in upwelling on atmospheric CO2 levels. Our findings indicate that the equatorial Atlantic exerted a minimal role in contributing to lower glacial-age atmospheric CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coccolithophore Emiliania huxleyi was cultured under a broad range of carbonate chemistry conditions to distinguish the effects of individual carbonate system parameters on growth, primary production, and calcification. In the first experiment, alkalinity was kept constant and the fugacity of CO2(fCO2) varied from 2 to 600 Pa (1Pa ~ 10 µatm). In the second experiment, pH was kept constant (pHfree = 8) with fCO2 varying from 4 to 370 Pa. Results of the constant-alkalinity approach revealed physiological optima for growth, calcification, and organic carbon production at fCO2 values of ~20Pa, ~40 Pa, and ~80 Pa, respectively. Comparing this with the constant-pH approach showed that growth and organic carbon production increased similarly from low to intermediate CO2 levels but started to diverge towards higher CO2 levels. In the high CO2 range, growth rates and organic carbon production decreased steadily with declining pH at constant alkalinity while remaining consistently higher at constant pH. This suggests that growth and organic carbon production rates are directly related to CO2 at low (sub-saturating) concentrations, whereas towards higher CO2 levels they are adversely affected by the associated decrease in pH. A pH dependence at high fCO2 is also indicated for calcification rates, while the key carbonate system parameter determining calcification at low fCO2 remains unclear. These results imply that key metabolic processes in coccolithophores have their optima at different carbonate chemistry conditions and are influenced by different parameters of the carbonate system at both sides of the optimum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of the coccolithophore Emiliania huxleyi to rising CO2 concentrations is well documented for acclimated cultures where cells are exposed to the CO2 treatments for several generations prior to the experiment. The exact number of generations required for acclimation to CO2-induced changes in seawater carbonate chemistry, however, is unknown. Here we show that Emiliania huxleyi's short-term response (26 h) after cultures (grown at 500 µatm) were abruptly exposed to changed CO2 concentrations (~190, 410, 800 and 1500 ?atm) is similar to that obtained with acclimated cultures under comparable conditions in earlier studies. Most importantly, from the lower CO2 levels (190 and 410 ?atm) to 750 and 1500 µatm calcification decreased and organic carbon fixation increased within the first 8 to 14 h after exposing the cultures to changes in carbonate chemistry. This suggests that Emiliania huxleyi rapidly alters the rates of essential metabolical processes in response to changes in seawater carbonate chemistry, establishing a new physiological "state" (acclimation) within a matter of hours. If this relatively rapid response applies to other phytoplankton species, it may simplify interpretation of studies with natural communities (e.g. mesocosm studies and ship-board incubations), where often it is not feasible to allow for a pre-conditioning phase before starting experimental incubations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some planktonic groups suffer negative effects from ocean acidification (OA), although copepods might be less sensitive. We investigated the effect of predicted CO2 levels (range 480-750 ppm), on egg production and hatching success of two copepod species, Centropages typicus and Temora longicornis. In these short-term incubations there was no significant effect of high CO2 on these parameters. Additionally a very high CO2 treatment, (CO2 = 9830 ppm), representative of carbon capture and storage scenarios, resulted in a reduction of egg production rate and hatching success of C. typicus, but not T. longicornis. In conclusion, reproduction of C. typicus was more sensitive to acute elevated seawater CO2 than that of T. longicornis, but neither species was affected by exposure to CO2 levels predicted for the year 2100. The duration and seasonal timing of exposures to high pCO2, however, might have a significant effect on the reproduction success of calanoid copepods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280-400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2-enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV-absorptivity increased under the highpCO2/low pH condition. Nevertheless, UV-induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2-acidified seawater, suggesting that the calcified layer played a UV-protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5-2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.