160 resultados para Bivalvia sp., larvae


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Danubs 2001 dataset contains zooplankton data collected in March, June, September and October 2001 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "SESAME_IT4_ZooAbundance_0-50-100m_SZN" dataset contains data of mesozooplankton species composition and abundance (ind./m**3) from samples collected in the Western Mediterranean in the early spring of 2008 (20 March-5 April) during the SESAME-WP2 cruise IT4. Samples were collected by vertical tows with a closing WP2 net (56 cm diameter, 200 µm mesh size) in the following depth layers: 100-200 m, 50-100 m, 0-50 m. Sampling was always performed in light hours. A flowmeter was applied to the mouth of the net, however, due to its malfunctioning, the volume of filtered seawater was calculated by multiplying the the area by the height of the sampled layer from winch readings. After collection, each sample was split in two halves (1/2) after careful mixing with graduated beakers. Half sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) for species composition and abundance. The other half sample was kept fresh for biomass measurements (data already submitted to SESAME database in different files). Here, only the zooplankton abundance of samples in the upper layers 0-50 m and 50-100 m are presented. The abundance data of the samples in the layer 50-100 m will be submitted later in a separate file. The volume of filtered seawater was estimated by multiplying the the area by the height of the sampled layer from winch readings. Identification and counts of specimens were performed on aliquots (1/20-1/5) of the fixed sample or on the total sample (half of the original sample) by using a graduate large-bore pipette. Copepods were identified to the species level and separated into females, males and juveniles (copepodites). All other taxa were identified at the species level when possible, or at higher taxonomic levels. Taxonomic identification was done according to the most relevant and updated taxonomic literature. Total mesozooplankton abundance was computed as sum of all specific abundances determined as explained above.