428 resultados para Barrier-reef
Resumo:
Stable isotopic data obtained from planktonic and benthic foraminifers were used to study paleoceanographic changes along the northeastern Australian margin from late Miocene (10 Ma) to Holocene time, and to evaluate the influence of these changes on reef growth. The data indicate that variations in surface-water temperatures may have had an important effect on the reef complexes on the Queensland Plateau and possibly off the northeastern Australian margin. Three sites were studied: Leg 21, Site 209 on the eastern edge of the Queensland Plateau, and Leg 133, Site 811 on the western margin, and Site 817 on the lower southern slope of the plateau. Shallow-water bioclasts recovered from Holes 811A and 817A indicate extensive reef growth on the Queensland Plateau during the middle Miocene (before 12 Ma), signifying surface-water temperatures of 20°C or greater. The amount of reefal detritus produced during the late Miocene (10.0-5.2 Ma) decreased progressively, resulting in a reduction in area of the reef complexes. The isotopic data from planktonic foraminifers in these late Miocene age sediments indicate the presence of relatively cool surface waters (16°-19°C), which may have been a major factor contributing to the demise of the reefs on the Queensland Plateau. Surface waters remained cool until the middle Pleistocene (1.2-0.5 Ma), when the surface-water temperature apparently increased to approximately 25°C, recorded both in the isotopic data and by renewed reef growth. This increase occurred simultaneously (within the error of the age model) with the initiation of the Great Barrier Reef. We propose that cooling of surface waters during the early late Miocene contributed to reef decline on the Queensland Plateau, and that subsequent warming of surface waters during the middle Pleistocene promoted the initiation of reef growth on the northeastern Australian margin. Reef development on the Queensland Plateau never recovered to the middle Miocene extent because of a combination of tectonic (accelerated subsidence of the plateau) and paleoceanographic (the cooler surface waters present from the late Miocene throughout the Pliocene) factors. Variations in seafloor d18O appear to be controlled by regional factors, as indicated by the similarity of data from Sites 811 and 817 to those from Site 590 on Lord Howe Rise.